
Generic vs. Language-Specific Model Versioning∗

Adaptability to the Rescue

Petra Brosch
Business Informatics Group

Vienna University of
Technology, Austria

brosch@big.tuwien.ac.at

Philip Langer
Business Informatics Group

Vienna University of
Technology, Austria

langer@big.tuwien.ac.at

Martina Seidl
Institute for Formal Models

and Verification
Johannes Kepler University

Linz, Austria
martina.seidl@jku.at

Manuel Wimmer
Software Engineering Group

Universidad de Málaga, Spain
mw@lcc.uma.es

Gerti Kappel
Business Informatics Group

Vienna University of
Technology, Austria

gerti@big.tuwien.ac.at

ABSTRACT
In this paper, we discuss how to make a generic model ver-
sioning system language-specific by using various adaptation
techniques. In particular, we recap some lessons learned dur-
ing the AMOR project and outline some open challenges for
adaptable model versioning systems.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software con-
figuration management

Keywords
model versioning, model management

1. INTRODUCTION
In code-centric software development, mainly language-in-
dependent versioning systems are employed [3]. Such sys-
tems do not pose any restrictions concerning programming
languages and development environments. Also in the con-
text of model-driven engineering (MDE), language-specific
versioning systems are rare, when taking into consideration
that domain-specific modeling languages are becoming more
and more popular. However, language-specific versioning
support provides better results regarding difference and con-
flict detection, as well as conflict visualization and resolu-
tion. The main reason for not adopting a language-specific
versioning approach seems to be the following. In contrast

∗This work has been partly funded by the Vienna Science
and Technology Fund (WWTF) through project ICT10-
018 and by the Austrian Science Fund (FWF) under grant
J 3159-N23.

to language-independent approaches, language-specific ver-
sioning systems currently have to be developed for each mod-
eling language from scratch. While generic model version-
ing systems provide out-of-the-box versioning support for
arbitrary modeling languages adhering to the same meta-
metamodeling language, they might lack of precision as they
are not aware of the language semantics. Hence, to combine
the strengths of both approaches, a generic yet adaptable
framework for model versioning seems promising.

In this paper, we discuss how such an adaptable version-
ing framework may be realized. To this end, we present
AMOR1 [2], an optimistic model versioning system which
provides generic versioning support in order to be used out-
of-the-box for any Ecore-based modeling language. For im-
proving the overall versioning process, AMOR may be adapted
with language-specific information. Based on our experi-
ences with AMOR, we derive multiple challenges which adap-
tive model versioning systems have to face.

2. ADAPTABLE MODEL VERSIONING
The main goal of AMOR is to combine the advantages of
both generic and language-specific model versioning by pro-
viding a generic, yet adaptable model versioning framework.
The generic framework offers versioning support for all mod-
eling languages conforming to a common meta-metamodel
out-of-the-box and enables users to enhance the quality of
the versioning capabilities by adapting the framework to
specific modeling languages using well-defined adaptation
points. Thereby, developers are empowered to balance flex-
ibly between reasonable adaptation efforts and the required
level for versioning support.

Model merging with AMOR. Given two concurrently evol-
ved models Vr1 and Vr2 stemming from one common an-
cestor version Vo, AMOR realizes a multi-phase versioning
process.

The first phase of the merge process concerns the operation

1http://www.modelversioning.org/



detection [6]. The goal of this phase of the process is to de-
tect precisely which operations have been applied between
Vo and Vr1 as well as between Vo and Vr2. Since AMOR
aims to be independent from the modeling editor, a state-
based model comparison is performed, which is carried out
in three steps. First, the revised models are matched with
the common original model Vo. Therefrom, two match mod-
els are obtained, which describe the correspondences among
the original model and the revised models. Next, the ap-
plied atomic operations are computed. Besides atomic op-
erations, AMOR provides techniques for detecting composite
operations, such as model refactorings. The output of this
phase of the process are two difference models DVo,Vr1 and
DVo,Vr2 , which describe all operations performed in the con-
current modifications.

Based on the two difference models, the next phase of the
process of the merge process aims at detecting conflicts among
the concurrently applied operations [6]. Thereby not only
atomic operation conflicts like delete-update conflicts, but
also conflicts among composite operations are revealed. All
detected conflicts are saved into a conflict model.

The computed differences and detected conflicts serve then
as input for the conflict resolution phase [1, 13]. AMOR’s
conflict resolution process provides two interchangeable strate-
gies. Both strategies combine the strength of automatic
merging and inconsistency toleration and calculate a ten-
tatively merged model. The tentative merge acts as base for
either collaboration [13] and/or recommendation supported
conflict resolution [1].

Adaption in AMOR. Generic versioning is accomplished
by using the reflective interfaces of the Eclipse Modeling
Framework [12] (EMF) serving as reference implementation
of OMG’s MOF standard [11]. Thereby, all modeling lan-
guages can be handled immediately for which an EMF-based
metamodel is available. AMOR is also independent of the
used modeling editor and does not rely on specific features
on the editor side. Therefore, we may not apply editor-
specific operation recording to obtain the applied operations.
Instead, AMOR works only with the states of a model before
and after it has been changed and derives the applied opera-
tions using state-based model differencing. Further, AMOR
is adaptable with language-specific knowledge by the users of
the versioning system. AMOR’s design enables these users to
create and maintain the adaptation artifacts by themselves
without requiring deep knowledge on the implementation of
the versioning system and programming skills. Therefore,
AMOR is adapted by providing descriptive adaptation ar-
tifacts and uses, as far as possible, modeling languages to
specify the required language-specific knowledge. No pro-
gramming effort is necessary to enhance AMOR’s versioning
capabilities with respect to language-specific aspects.

3. FUTURE CHALLENGES
Based on our experience gained during the AMOR project,
we outline in this section some interesting challenges to be
addressed in future.

Adaptation points. As mentioned above, one major goal of
AMOR is to combine the benefits of generic and language-
specific versioning systems by providing adaptation points
that can be used to enhance the quality of the merge pro-
cess with respect to the peculiarities of a specific model-
ing language. Therefore, we introduced adaptation points
for adding language-specific knowledge such as match rules,
composite operations, conflict types, and conflict resolution
strategies in order to enable dedicated support for specific
aspects of a modeling language. However, it is still an
open question whether these adaptation points are sufficient.
Thus, further research is necessary to investigate if the qual-
ity of certain phases of the merge process can be significantly
improved when additional language-specific knowledge is in-
corporated.

Specification of adaptation artifacts. Another open chal-
lenge with respect to the adaptation of a versioning sys-
tem is how to represent the language-specific knowledge in
terms of adaptation artifacts. One way is obviously to re-
place the entire generic implementation of a merge phase
with a language-specific implementation that encodes the
language-specific knowledge. This, however, requires pro-
gramming effort and specific knowledge on the mechanics of
the versioning systems (cf. white-box adaptation vs. black-
box adaptation [4]). A superior way would be to enable users
to describe the respective language-specific knowledge in
terms of declarative adaptation artifacts and provide generic
algorithms that incorporate and interpret these adaptation
artifacts dynamically. For instance, it seems to be more con-
venient to describe the reasons for language-specific conflicts
for adapting a conflict detection mechanism in contrast to
specifying an implementation for detecting these conflicts.
However, designing such generic algorithms and finding a
proper representation of the language-specific knowledge is
a major challenge.

Derivation and reuse of adaptation artifacts. Adapting
a model versioning system towards dedicated support for a
specific modeling language can be a time-consuming task.
Therefore, another challenge concerns techniques for deriv-
ing the adaptation artifacts (semi-)automatically from ex-
isting specifications of the modeling language, such as the
abstract syntax definition (metamodel and validation rules),
the concrete syntax definition, and, if available, the opera-
tional semantics definition or modeling operations such as
refactorings. We believe that novel techniques exploiting
these specifications of the modeling language for deriving
adaptation artifacts bear a significant potential. Once adap-
tation artifacts exist, it would increase efficiency to allow
for reusing existing adaptation artifacts, on the one hand,
across different phases of the merge process and, on the
other hand, for multiple similar modeling languages that
share specific aspects. Thereby, we should follow the DRY
principle (“don’t repeat yourself”) [5] when adapting model
versioning systems.

Performance vs. precision. As the overall merge process
consists of several computation intensive steps, committing a
new version may get extremely time-consuming for the user,



who has to wait and to provide manual conflict resolution. In
some cases performance may be increased by a more explicit
representation of the language-specific adaptation artifacts.
For example, evaluating OCL [10] constraints and tracing
back to the respective changes may take much longer, than
searching for forbidden change patterns, which are explicitly
specified. However, this way, violations due to unspecified
change patterns may not be revealed. Therefore, the trade-
off between performance and precision has to be investigated
in more detail.

Standardization of differences, conflicts, and resolu-
tions. Another important practical issue refers to the in-
teroperability between model versioning systems. In accor-
dance with OMG’s core mission of providing vendor and tool
independent industry standards, interoperability, reusabil-
ity, and portability are the major design criteria manifested
in the model-driven architecture initiative [7]. However,
while for the design of domain-specific modeling languages,
those characteristics are preserved by OMG’s MOF stan-
dard [11], a commonly accepted standard for representing
language evolution is still missing, although some incen-
tives [8, 9] have been provided by the OMG in this context.
Hence, current model versioning systems use proprietary so-
lutions for capturing model differences, detected conflicts,
and their respective conflict resolution patterns, which im-
pedes comparison and interoperability thereof.

Versioning and quality assurance. In the context of model
versioning, syntactically non overlapping differences may lead
to inconsistent models in respect of the modeling language’s
semantics or the modeled system’s semantics. Therefore,
some state-of-the-art model versioning systems aim at de-
tecting and reporting such inconsistencies after the merged
version is computed. However, it is controversial, whether
inconsistency detection shall be included within versioning
support, as such problems may be also introduced by one
single modeler. Further, as efficient tools for inconsistency
detection and quality assurance already exist, it has to be
investigated how appropriate adaptation points for plugging
such tools into the versioning systems may be designed.

4. REFERENCES
[1] P. Brosch. Conflict Resolution in Model Versioning.

PhD thesis, Vienna University of Technology, 2012.

[2] P. Brosch, G. Kappel, M. Seidl, K. Wieland,
M. Wimmer, H. Kargl, and P. Langer. Adaptable
Model Versioning in Action. In Modellierung, volume
161 of LNI, pages 221–236. GI, 2010.

[3] J. Estublier, D. Leblang, A. Hoek, R. Conradi,
G. Clemm, W. Tichy, and D. Wiborg-Weber. Impact
of Software Engineering Research on the Practice of
Software Configuration Management. ACM
Transactions on Software Engineering and
Methodology (TOSEM), 14(4):383–430, 2005.

[4] T. Gschwind. Adaptation and Composition Techniques
for Component-based Software Engineering. PhD
thesis, Vienna University of Technology, 2002.

[5] A. Hunt and D. Thomas. The Pragmatic Programmer:
From Journeyman to Master. Addison-Wesley

Professional, 2000.

[6] P. Langer. Adaptable Model Versioning based on Model
Transformation by Demonstration. PhD thesis, Vienna
University of Technology, 2011.

[7] Object Management Group. Model-driven
Architecture (MDA).
http://www.omg.org/mda/specs.htm, 04 2005.

[8] Object Management Group. MOF 2.0 Versioning and
Development Lifecycle (MOFVD).
http://www.omg.org/spec/MOFVD/2.0, 05 2007.

[9] Object Management Group. MOF 2.0 Facility and
Object Lifecycle (MOFFOL).
http://www.omg.org/spec/MOFFOL/2.0/, 03 2010.

[10] Object Management Group. Object Constraint
Language (OCL), Version 2.2.
http://www.omg.org/spec/OCL/2.2, 02 2010.

[11] Object Management Group. OMG Meta Object
Facility (MOF) Core Specification.
http://www.omg.org/spec/MOF/2.4.1/, 08 2011.

[12] D. Steinberg, F. Budinsky, M. Paternostro, and
E. Merks. Eclipse Modeling Framework 2.0.
Addison-Wesley Professional, 2008.

[13] K. Wieland. Conflict-tolerant Model Versioning. PhD
thesis, Vienna University of Technology, 2011.


