
Towards a Model Transformation Intent Catalog
Moussa Amrani

University of Luxembourg
Luxembourg

Moussa.Amrani@uni.lu

Jürgen Dingel
Queen’s University

Kingston ON, Canada
Dingel@cs.queensu.ca

Leen Lambers
Hasso Plattner Institute

Postdam, Germany
Leen.Lambers@hpi.uni-potsdam.de

Levi Lúcio
McGill University

Montreal QC, Canada
levi@cs.mcgill.ca

Rick Salay
University of Toronto
Toronto ON, Canada

rsalay@cs.toronto.edu

Gehan Selim
Queen’s University

Kingston ON, Canada
Gehan@cs.queensu.ca

Eugene Syriani
University of Alabama
Tuscaloosa AL, USA

esyriani@cs.ua.edu

Manuel Wimmer
University of Malaga

Spain
mw@lcc.uma.es

ABSTRACT
We report on our ongoing effort to build a catalog of model
transformation intents that describes common uses of model
transformations in Model-Driven Engineering (MDE) and
the properties they must or may possess. We present a pre-
liminary list of intents and common properties. One intent
(transformation for analysis) is described in more detail and
the description is used to identify transformations with the
same intent in a case study on the use of MDE techniques for
the development of control software for a power window.

Categories and Subject Descriptors
D.2 [Software Engineering]: Design Tools and Techniques;
Design Methodologies

Keywords
Model-Driven Engineering, Model Transformations, Classi-
fication

1. INTRODUCTION
While most model transformation languages are Turing-

complete and, as such, can be used to solve any computable
problem, most were developed to support Model-Driven En-
gineering (Mde). We identify a limited set of model transfor-
mation intents that appear repeatedly in most Mde efforts.
Awareness of these intents is useful for developers of model
transformations and model transformation languages. For
instance, the intent of a model transformation can be to ex-
tract different views from a model (query), add or remove
detail (refinement or abstraction), translate the model to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AMT ’12, Oct 01 - October 05 2012, Innsbruck, Austria
Copyright 2012 ACM 978-1-4503-1803-7/12/10 ...$15.00.

another modeling language (translation), execute the model
(simulation), restructure the model to improve certain qual-
ity attributes (refactoring), compose models (composition),
or reconcile the information in different models (synchro-
nization).

Each of these intents has its own set of attributes and
properties. The effectiveness of a transformation in realis-
ing an intent depends on how well it respects the intent’s
attributes and properties. For instance, queries should pro-
duce information contained in the model in some form, trans-
lations and refactorings should preserve model semantics,
and refinements should add information.

Influenced by the survey conducted in [1], this paper re-
ports on our ongoing effort to build a model transformation
intent catalog that identifies and describes transformations
intents and the properties they may or must possess. This
catalog has several potential uses:

1. Requirements analysis for transformations: The cat-
alog facilitates the description of transformation re-
quirements, i.e., of what a transformation is supposed
to do. Improved requirements can improve reuse, be-
cause they may make it easier to locate suitable trans-
formations among a set of existing ones and reuse them.

2. Identification of properties, certification methods, and
languages: The catalog may help transformation de-
velopers become aware of properties a transformation
must possess, how these properties can be certified,
and which transformation language is known to best
support their needs (i.e., if the used certification meth-
ods are language dependent).

3. Model transformation language design: The catalog
may provide some useful input for designers of domain-
specific transformation languages. For instance, it may
be appropriate to design dedicated languages for spe-
cific intents for efficiency or readability. The proper-
ties and certification methods associated with an intent
may provide useful information about requirements of
a transformation language used for an intent.

Due to the space limitation, a subset of our current in-
tent catalog and the supporting references is demonstrated
in this paper. Besides illustrating our catalog and its uses

3

Figure 1: Portion of the intent domain meta-
model with key classes ModelTransformationIntent

and Property.

ModelTransformationIntent

name

description

useContext

example

exogenous?

endogenous?

preconditions

Propertymandatory 1..*

optional

*

relatedIntent

*

with different transformation examples from the literature,
we use a case study on the use of transformations for the
development of a car’s power window software. It shows
how important transformations are for the Mde of embed-
ded software and how diverse their intents can be. In future
work, we plan to complete the catalog and use it to classify
and compare model transformation analysis approaches by
extending the work in [1].

The paper is structured as follows: Section 2 presents
a schema to describe an intent catalog, identifies common
transformation intents, and lists some of their common prop-
erties; Section 3 instantiates this schema on a particular
intent, namely the translation for analysis; Section 4 il-
lustrates this particular intent with some of the matching
transformations in the power window case study; Section 5
presents related work; and finally Section 6 concludes.

2. A MODEL TRANSFORMATION INTENT
CATALOG

This section proposes a schema for a model transformation
intent catalog: each intent has a set of attributes and prop-
erties, and a transformation with this intent should demon-
strate such properties to be able to achieve its underlying
goal. We then list a set of common transformation intents
and model transformation properties from the literature.

2.1 Transformation Intent Catalog Scheme
In order to describe model transformations intents in a

systematic way, we developed a schema for model transfor-
mations intents and their properties, which forms the basis
of our intent catalog. Figure 1 shows a fragment of this
schema as a metamodel: its root class is ModelTransfor-

mationIntent, whose attributes as described in Table 1.
Adapted from the Gang Of Four [2], we define a transfor-
mation intent is as follows:

Definition 1. A model transformation intent is a descrip-
tion of the goal behind the model transformation and the
reason for using it.

The class Property encapsulates the properties of trans-
formations that fall under a specific intent. We restrict our
definition of a model transformation property as follows:

Definition 2. A model transformation property is any ver-
ifiable characteristic inherent to a model transformation that
depends on the internal details of its input/output types (i.e.,
definition of syntax and semantics) or the internal details of
its implementation (i.e., the “code” of the transformation).

Attributes

name Name used to identify the intent

description Informal description of the intent’s goal

useContext Description of when to use a transformation with
this intent (i.e. what problems can be solved?)

example Examples of transformations with this intent

exogeneous? True iff this intent can be expressed with an ex-
ogeneous transformation

endogeneous? True iff this intent can be expressed with an en-
dogeneous transformation

preconditions Conditions that must hold before applying intent

Associations

mandatory Property required for a transformation to have
this intent

optional Property optional for a transformation to have
this intent

relatedIntent Other intent often associated with current one

Table 1: Attributes of ModelTransformationIntent

Definition 2 is used to justify cases where it is not clear
whether to use an attribute or a property to express a con-
cept related to an intent. For example, the attribute en-

dogenous? could also be expressed as a transformation prop-
erty called, and then associating this as an optional property
to each intent that can have endogenous transformations. In
this case, the concept of being endogeneous does not satisfy
Definition 2 since it is dependent only on the fact of whether
the input/output types are the same or different and not on
those input/output types’ internal details. Thus, we do not
use a property to express this concept.

2.2 Common Transformation Intents
As defined in [3], “a model transformation is an automated

manipulation of models according to a specific intent”. The
following list of model transformation intents extends pre-
vious work [3, 4, 5]. The proposed list is not meant to
be complete, but it nevertheless covers a wide spectrum of
common transformation intents. Moreover, transformation
chains may combine multiple intents in separate phases.

Manipulation Simple atomic or bulk operations on a model
such as adding, removing, updating, accessing, or nav-
igating through model elements is considered a model
transformation when the system is completely and ex-
plicitly modeled.

Restrictive Query requests for some information about
a model by a proper sub-model a.k.a. a view. We
consider any subsequent aggregation or restructuring
of the sub-model as an abstraction.

Refinement produces a lower level specification (e.g., a
platform-specific model) from a higher level specifi-
cation (e.g., a platform-independent model) [6]. As
defined in [7], a model m1 refines another model m2

if m1 can answer all questions that m2 can answer.
For example, a non-deterministic finite state automa-
ton (NFA) can be refined into a deterministic finite
state automaton (DFA).

Abstraction is the inverse of refinement: if m1 refines m2

then m2 is an abstraction of m1. For example, an NFA
is an abstraction of a DFA.

4

Synthesis produces a well-defined language format that
can be stored, such as in serialization: e.g., model-
to-code generation produces source code in a target
programming language (like generating Java code from
UML class diagrams).

Reverse engineering is the inverse of synthesis: it ex-
tracts higher level specifications from lower-level ones:
e.g., generating UML class diagram models from Java
code (using e.g. Fujaba [8]).

Approximation is a refinement with respect to negated
properties, as defined in [7], i.e. m1 approximates
m2 if m1 negates the answer to all questions that m1

negates. In practice, m2 is an idealization of m1 where
an approximation is only extremely likely: e.g., a Fast
Fourier Transform is an approximation of a Fourier
Transform which is computationally very expensive.

Translational Semantics defines a language’s semantics
in terms of another formalism, by specifying the se-
mantic mapping through a transformation from the
original language to the target semantic domain with
well-defined semantics: e.g., Causal Block Diagram’s
semantics expressed as Ordinary Differential Equations.

Analysis A model transformation can be used to map a
modeling language to a formalism that can be ana-
lyzed more appropriately than the original language.
The target language is typically a formal language with
known analysis techniques. For example, a Petri net
model is transformed into a reachability graph on which
liveness properties can be evaluated.

Simulation defines the operational semantics of a model-
ing language, by defining a model transformation that
updates the modeled system’s state: e.g., a transfor-
mation can simulate a Petri net model and produces a
trace of the transition firing.

Normalization aims to decrease the syntactic complex-
ity of models by translating complex language con-
structs into more primitive constructs, which results in
a canonical form of a model: e.g., a Statechart model
is normalized into its flattened form by removing OR-
and AND-states.

Rendering assigns one (or several) concrete representation
to each abstract syntax element or group of elements,
as long as a meta-model of the concrete syntax is de-
fined explicitly.

Model Generation aims at automatically producing pos-
sible (correct) instances of a metamodel, e.g., [9].

Migration transforms a software model written in one lan-
guage (or framework) into another one, keeping models
at the same abstraction level [10]: e.g., migrating En-
terprise Java Beans 2.0 (EJB2) code in such a way that
resulting models conforms to into EJB3.

Optimization aims at improving operational qualities of
models such as scalability and efficiency: e.g., replac-
ing n-ary association with binary associations in a UML
class diagram may optimize generated code.

Refactoring is a restructuring that changes the internal
structure of the model to improve certain quality char-
acteristics without changing its observable behavior [11]:
e.g. Zhang et al. [12] proposed a generic model trans-
formation engine that can be used to specify refactor-
ings for domain-specific models.

Composition integrates models produced in isolation into
a compound model; where each isolated model typi-
cally represents a concern which may overlap: model
merging creates a new model such that every element
from each model is present exactly once in the merged
model; whereas model weaving creates correspondence
links between overlapping entities.

Synchronization integrates models evolving in isolation
but subject to global consistency constraints, by prop-
agating changes to these integrated models.

2.3 Common Transformation Properties
We now identify a relevant set of model transformation

properties for our purposes, based on the transformation
properties classification presented in [1], and a literature sur-
vey we conducted for this paper. Very little work exists in
the literature for classifying model transformation proper-
ties. Therefore, and due to space limitations, we present a
set of properties that is tentative and obviously incomplete,
and rather focus on the transformation properties required
for Section 3. Note that the two last properties are non-
functional whereas all previous ones are functional [13].

Termination A terminating transformation produces an
output model from an input model in finite time. Ter-
mination directly refers to Turing’s halting problem,
which is known to be undecidable for Turing-complete,
model transformation languages, which has been ad-
dressed extensively, e.g., [14, 15, 16, 17];

Determinism A deterministic transformation always pro-
duces the same output model for the same input model.
Determinism has been addressed extensively in several
studies, including [18, 15, 19];

Type Correctness A type correct transformation ensures
that both input and output models conform to their re-
spective metamodels. Usually, structural conformance,
involving only the metamodel, is distinguished from
conformance w.r.t. additional well-formedness rules
(e.g.,[20]);

Property preservation A transformation can preserve the
syntactic [21, 22] or semantic [23, 24] properties of a
model. For exogenous transformations, a formal prop-
erty of the input model needs to be transformed into
an equivalent property of the output model as e.g. in-
vestigated by Varro and Pataricza [24];

Traceability Most transformation languages allow logging
a transformation’s traceability links between the trans-
formation’s input and output model elements. This
mechanism is often used to alleviate the problem of
tracing back the analysis results from the transforma-
tion’s input model to its output model as done in [21,
25]. In cases where the traceability of the analysis re-
sults is simple (e.g. in [26] where the termination of
a transformation is decided by simulating a Petri Net
that abstracts the transformation’s semantics and that
always runs out of tokens in finite time), less costly
means may be employed.

Readability A transformation is readable if it is compre-
hensible and amenable to be read by humans. Distinct
parts in a transformation may be individually read-
able: the input model, the output model or the trans-
formation specification itself. Mens and Van Gorp

5

mention in [4] the readability property of model trans-
formations. To the best of our knowledge, little work is
done on the readability of software models, but metrics
do exist for evaluating software readability [27].

Mathematical underpinning A transformation has a ma-
thematical underpinning if the transformation language’s
semantics and/or the input and output metamodels’
semantics are mathematically formalised. Mens and
Van Gorp [4] refers to the mathematical properties of
transformation languages. There is vast literature on
the formalisation of programming and modeling lan-
guages (e.g. [28]).

3. OVERVIEW OF THE ANALYSIS INTENT
Due to space limitations, we demonstrate one intent, name-

ly the analysis intent. First, we overview literature studies
that fall under this intent. We then summarize the common-
alities of these studies using the proposed intent scheme.

Several example transformations from the literature fall
under the analysis intent. Kühne et al. [29] defined the se-
mantics of Finite State Automata in terms of Petri Nets. de
Lara and Taentzer [30] implemented a graph rewriting sys-
tem to transform process interaction models to timed transi-
tion Petri Nets for analysis. The graph rewriting system was
proven to be terminating, deterministic, type correct and
behaviour preserving (i.e., property preserving). Varró et
al. [26] transformed graph rewriting systems into Petri Nets
to analyze them for termination. König and Kozioura [31]
proposed a tool, Augur2, that approximates graph rewriting
systems as Petri Nets and analyzes them for property preser-
vation. A property of interest is specified as a graph pattern
which is transformed by Augur2 to an equivalent Petri Net
marking. Accordingly, Augur2 either verifies that the prop-
erty is satisfied or produces a counter example. Narayanan
and Karsai [21] implemented a graph rewriting system in
GREAT to transform UML activity diagrams to communi-
cating sequential process models. The graph rewriting sys-
tem was then checked for preserving structural correspon-
dences between input and output models (property preser-
vation). Narayanan and Karsai [23] implemented a graph
rewriting system in GREAT to transform state charts to Ex-
tended Hybrid Automata (EHA) models for analysis. The
graph rewriting system was then checked to preserve bisimi-
larity (i.e. property preservation) between input and output
models. Rivera et al. [32] mapped graph rewriting systems
to Maude and used reachability analysis and LTL model
checking in Maude to analyze the graph rewriting system
for property preservation. Properties were expressed as in-
variants, safety properties and liveness properties. Cabot
et al. [33] derive OCL invariants from declarative model-
to-model transformations to enable their analysis. In par-
ticular, several levels of executability are analysed such as
applicability (a valid input model exists), executability (a
valid output model exists), and totality (for every valid in-
put model an output model exists).

Table 2 instantiates the intent domain metamodel of Fig-
ure 1 for the analysis intent, summarizing our findings in
the literature as formerly described. In the studied litera-
ture most preconditions and mandatory properties stated in
Table 2 seem to be fulfilled, although they have not always
been explicitly stated as such or even verified for the par-
ticular case studies used in the corresponding papers. Our
work aims at identifying these gaps in order to allow for a

Attributes

name Analysis

description To indirectly analyse a property of the input
model by running the analysis algorithm on the
transformation’s output model

useContext Need to analyse models that are not analysable in
the transformation’s input language, or are more
efficiently analysable in the transformation’s out-
put language

example Analyse termination of graph rewriting systems
with Petri Nets [26]

exogeneous? True

endogeneous? True (if transforming to a profile of input model)

preconditions 1. Access to intended semantics;
2. Definition of the property of interest;
3. Existence of a verification method on the

target language for analyzing the property
of interest;

4. Existence of a method to translate the
property of interest onto the transforma-
tion’s output language (if the transforma-
tion is exogenous)

Associations

mandatory 1. Termination
2. Type correctness
3. Preservation of the property of interest

(specialises Property preservation)
4. Analysis result can be mapped back onto

the input model (specialises Traceability)

optional 1. Readability of the transformation’s output
for debugging purposes

2. Formal definition of input language’s se-
mantics (specialises Mathematical under-
pinning)

relatedIntent Translational Semantics, Simulation

Table 2: Analysis Intent

more systematic engineering of model transformations with
specific intents in the future.

4. APPLYING THE ANALYSIS INTENT TO
THE POWER WINDOW CASE STUDY

The power window case study [34] is an industrially ori-
ented study on the application of transformations to Mde
of software. This study directly interests us because it de-
scribes those transformations in terms of metamodels, model
transformations and Uml 2.0 activity diagrams chaining, the
process of building software to control an automobile’s power
window. A power window is basically an electrically pow-
ered vehicle window. The development of control software
for such devices is nowadays highly complex due to the set
of functionalities required for the comfort and security of the
vehicle’s passengers. This case study is relevant because it
exposes in a detailed fashion a large number of transforma-
tions that span many intents identified in Section 2.2.

The power window case study’s authors provide in their
text, using varying degrees of detail, the context where their
transformations occur and the properties those transforma-
tions should satisfy. We use this information as a means to
validate our work. Several transformations from the power
window case study apparently fall under the analysis intent.
In Table 3 we summarize these transformations according
to the classification of the analysis intent in Table 2. We
only provide brief descriptions of the case study’s transfor-
mations, which is entirely described in [34].

Several interesting questions are raised by the transforma-

6

Transformation Description Precond. Mandatory Optional

EnvToPN

PlantToPN

Build a Petri net representation of a specialised model of the
passenger’s interactions with the powerwindow (resp. of a
specialised model of the powerwindow physical configuration).
Check power window security requirements

(1),(2), (3) (1),(2), (3)

ScToPN Build a Petri net representation of a specialised model of the
powerwindow control software. Check power window security
requirements.

(1),(2), (3) (1),(2), (3) (1),(2)

ToBinPacking-Analysis Build an equational algebraic representation of the dynamic
behavior of the involved hardware components from an AU-
TOSAR [35] specification. Check processor load distribution.

(1),(2), (3),(4) (1),(2), (3),(4) (1)

ToSchedulability-Analysis Build an equational algebraic representation of the dynamic be-
havior of the involved hardware and software components from
an AUTOSAR specification. Check software response times.

(1),(2), (3),(4) (1),(2), (3),(4) (1)

ToDeployment-Simulation Build a DEVS representation of the deployment solution. Check
latency times, deadlocks and lost messages.

(1),(2), (4) (1),(2), (3),(4) (1)

Table 3: Model transformation examples from the case study falling under the analysis intent

tions we describe in Table 3. First, only two of the transfor-
mations fulfill the four preconditions listed in Table 2. This
may point to two issues: the transformation does indeed
have the analysis intent, but has not been fully implemented;
the transformation does not have the analysis intent. After
looking at the detailed description of the transformations in
Table 3, we found that transformations EnvToPN, PlantToPN
and ScToPN are missing precondition (4) (property transla-
tion implementation) described in Table 2. Work to address
that problem within the case study is foreseen. On the other
hand, we found that the ToDeploymentSimulation transfor-
mation has the simulation rather than the analysis intent,
which seems to be a good indicator of the discriminating
power of Table 2.

Regarding the mandatory properties, the EnvToPN, Plant-
ToPN and ScToPN transformations do not implement prop-
erty (4) of Table 2. As previously, this is mainly due to
the fact that the case study is not fully developed. In fact,
traceability for interpreting the analysis result on the input
model is yet to be implemented.

Finally, regarding the optional properties, the results in
Table 3 are to be expected. Some of the transformations do
exhibit the optional properties while others do not. This in-
dicates that our choice for such properties is indeed correct,
although most likely not complete.

5. RELATED WORK
The notion of intent in the software engineering discipline

is not new. Yu and Mylopoulos [36] realized in 1994 that
current research in this area was more focused on design
and implementation—the what and the how for developing
software—rather than on the requirements necessary to un-
derstand the software to improve the underlying production
processes—the why. To a certain extent, Mde is following
the same path: historically, research was more devoted to
the management of different modelling and transformation
activities instead of exploring the intents behind them.

Four contributions [4, 5, 37, 38] are related to our study;
all aiming for a classification of different transformation as-
pects. Mens and Van Gorp [4] provide a multidimensional
taxonomy of transformations exhibiting several syntactic clas-
sification dimensions. The dimensions are illustrated on
transformations related to our intents. However, our cat-
alog aims at reflecting known, documented uses of trans-
formations and proposes, in addition to the seven intents
presented in [4], ten additional intents whereas one of them

is characterised by its properties.
In [37], design patterns for model transformations expressed

in QVT Relations are presented. However, the intents be-
hind the transformations are not discussed.

Tisi et al. [38] examined higher-order transformations
(HOT), i.e., transformations manipulating transformations.
They classify them based on whether source and/or target
models are transformations or not. Our intents are more
general in the sense that we do not distinguish between
transformations and HOT allowing for a wider applicabil-
ity of the intent catalog.

The goal of Czarnecki and Helsen [5] was to classify the
features of transformations languages by establishing a fea-
ture model: they introduced five intended applications of
transformations which are also reflected by our catalog.

A taxonomy of program transformations is presented by
Visser [39]. Instead of proposing a taxonomy of multiple di-
mensions as in [4], Visser employs one discriminator for the
taxonomy: out-place vs. in-place transformations (named as
translations and rephrasing). Some of the leaf nodes in the
taxonomy are program-specific, e.g., (de-)compilation, inlin-
ing, and desugaring. However, other nodes in the taxonomy
are covered by our intent catalog. Moreover, we present sev-
eral intents specifically tailored to model transformations.

To sum up, the presented transformation intent catalog is
more comprehensive than previous attempts. Besides pro-
viding a name and an example of each intent, this catalog
propsoes comprehensive meta-information (e.g., the use con-
text, preconditions, etc.) and properties of interest for a
given intent. To the best of our knowledge, the latter has
not been subject of research in previous work.

6. CONCLUSION AND DISCUSSION
In this paper, we have presented our ongoing work on us-

ing the notion of intent to help us understand the uses of
model transformations in Mde and how they can be best
supported. More concretely, we listed some common trans-
formation intents and properties, presented a schema to de-
scribe intents, and briefly illustrated its use on a case study.

Future work includes making our catalog more compre-
hensive, as well as describing other intents, which is already
started. We also plan on identifying certification methods
that allow a given transformation property to be analyzed,
together with suitable references to corresponding research
efforts on the analysis and verification of transformations.

On the more abstract level, we hope to gain a better un-

7

derstanding of how potential uses of the catalog outlined in
the introduction can best be realized, if at all. For instance,
it is currently unclear how “crisply” intents and their prop-
erties can be described and how useful our descriptions are
in practice, as transformations in practice may have overlap-
ping intents and properties that span too large a spectrum.
Also, it may be more useful to think of intents as a form
of “requirements patterns” [40] for transformations. To sup-
port transformation analysis, a formal framework for the
description of properties and a related extension of our in-
tent metamodel will be developed. Finally, how intents and
the certification of properties can be best supported by, pos-
sibly, dedicated transformation languages, is another topic
for future work.

7. REFERENCES
[1] M. Amrani, L. Lúcio, G. Selim, B. Combemale, J. Dingel,

H. Vangheluwe, Y. Le Traon, and J. R. Cordy, “A
Tridimensional Approach for Studying the Formal
Verification of Model Transformations,” in Volt
Workshop, 2012.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison Wesley, 1994.

[3] E. Syriani, “A Multi-Paradigm Foundation for Model
Transformation Language Engineering,” Ph.D. Thesis,
McGill University, 2011.

[4] T. Mens and P. Van Gorp, “A Taxonomy Of Model
Transformation,” Entcs, vol. 152, pp. 125–142, 2006.

[5] K. Czarnecki and S. Helsen, “Feature-Based Survey of
Model Transformation Approaches,” Ibm Systems J., vol.
45(3), pp. 621–645, 2006.

[6] A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained:
The Model Driven Architecture: Practice and Promise.
Addison-Wesley, 2003.

[7] Holger Giese, Tihamer Levendovszky, and Hans
Vangheluwe, “Summary of the Workshop on
Multi-Paradigm Modeling: Concepts and Tools,” in Models
in Software Engineering, vol. 4364, 2007.

[8] T. Fischer, J. Niere, L. Turunski, and A. Zündorf, “Story
Diagrams: A New Graph Rewrite Language Based on Uml
and Java,” in Theory and Application of Graph
Transformations, 2000, pp. 296–309.

[9] J. Winkelmann, G. Taentzer, K. Ehrig, and J. Küster,
“Translation of Restricted OCL Constraints into Graph
Constraints for Generating Meta Model Instances by Graph
Grammars,” Entcs, vol. 211, pp. 159–170, 2008.

[10] P. Mc Brien and A. Poulovassi, “Automatic Migration and
Wrapping of Database Applications - A Schema
Transformation Approach,” in Conceptual Modeling ER,
vol. 1782, 1999, pp. 99–114.

[11] W. G. Griswold, “Program Restructuring as an Aid to
Software Maintenance,” Ph.D. dissertation, University of
Washington, August 1991.

[12] J. Zhang, Y. Lin, and J. Gray, “Generic and
Domain-Specific Model Refactoring Using a Model
Transformation Engine,” in Research and Practice in
Software Engineering (Vol. II), 2005, pp. 199–218.

[13] I. Sommerville, Software Engineering. Addison-Wesley.
[14] H.-K. Ehrig, G. Taentzer, J. de Lara, D. Varró, and

S. Varró Gyapai, “Termination Criteria for Model
Transformation,” in Fase, 2005.

[15] J. M. Küster, “Definition and Validation of Model
Transformations,” SoSyM, vol. 5(3), pp. 233–259, 2006.

[16] H. S. Bruggink, “Towards a Systematic Method for Proving
Termination of Graph Transformation Systems,” Entcs,
vol. 213(1), 2008.

[17] F. Spoto, P. M. Hill, and E. Payet, “Path-Length Analysis
of Object-Oriented Programs,” in Eaai, 2006.

[18] R. Heckel, J. M. Küster, and G. Taentzer, “Confluence of
Typed Attributed Graph Transformation Systems,” in
Icgt, 2002.

[19] L. Lambers, H. Ehrig, and F. Orejas, “Efficient Detection of
Conflicts in Graph-based Model Transformation,” Entcs,
vol. 152, 2006.

[20] A. Boronat, “MoMent: A Formal Framework for Model
manageMent,” Ph.D. dissertation, University of Valencia,
2007.

[21] A. Narayanan and G. Karsai, “Verifying Model
Transformations by Structural Correspondence,” EcEasst,
vol. 10, 2008.

[22] L. Lúcio, B. Barroca, and V. Amaral, “A Technique for
Automatic Validation of Model Transformations,” in
MoDELS, 2010, pp. 136–150.

[23] A. Narayanan and G. Karsai, “Towards Verifying Model
Transformations,” Entcs, vol. 211, pp. 191–200, 2008.

[24] Dániel Varró and András Pataricza, “Automated Formal
Verification of Model Transformations,” in csdUml
Workshop, 2003, pp. 63–78.

[25] L. Lúcio, Q. Zhang, V. Sousa, and Y. Le Traon, “Verifying
Access Control in Statecharts,” EcEasst, 2012.

[26] D. Varró, S. Varró-Gyapay, H. Ehrig, U. Prange, and
G. Taentzer, “Termination Analysis of Model
Transformations by Petri Nets,” International Conference
on Graph Transformations, pp. 260–274, 2006.

[27] R. P. Buse and W. R. Weimer, “A metric for software
readability,” in Proceedings of ISSTA ’08. NY, USA:
ACM, 2008, pp. 121–130.

[28] D. Harel and B. Rumpe, “Modeling Languages: Syntax,
Semantics and All That Stuff, Part I: The Basic Stuff,”
Israel, Tech. Rep., 2000.

[29] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and
M. Wimmer, “Systematic Transformation Development,”
EcEasst, vol. 21, 2009.

[30] J. de Lara and G. Taentzer, “Automated Model
Transformation and its Validation Using AToM3 and
AGG,” in Diagrams, 2004, pp. 182–198.

[31] B. König and V. Kozioura, “Augur 2–A New Version of a
Tool for the Analysis of Graph Transformation Systems,”
Electronic Notes in Theoretical Computer Science
(ENTCS), vol. 211, pp. 201–210, 2008.

[32] J. Rivera, E. Guerra, J. de Lara, and A. Vallecillo,
“Analyzing Rule-Based Behavioral Semantics of Visual
Modeling Languages with Maude,” Software Language
Engineering, pp. 54–73, 2009.

[33] J. Cabot, R. Clarisó, E. Guerra, and J. de Lara,
“Verification and Validation of Declarative Model-to-Model
Transformations Through Invariants,” JSS, vol. 83(2), pp.
283–302, 2010.

[34] L. Lúcio, J. Denil, and H. Vangheluwe, “An Overview of
Model Transformations for a Simple Automotive Power
Window,” McGill University, Tech. Rep. SOCS-TR-2012.2,
2012, http://msdl.cs.mcgill.ca/people/levi/AMT/material/.

[35] AUTOSAR, “http://www.autosar.org,” 2010.
[36] E. S. Yu and J. Mylopoulos, “Understanding “Why” in

Software Process Modelling, Analysis, and Design,” in Icse,
1994, pp. 159–168.

[37] M.-E. Iacob, M. W. A. Steen, and L. Heerink, “Reusable
Model Transformation Patterns,” in EDOCW’08, 2008, pp.
1–10.

[38] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin,
“On the Use of Higher-Order Model Transformations,” in
Ecmda-Fa, 2009, pp. 18–33.

[39] Eelco Visser, “A Survey of Strategies in Rule-Based
Program Transformation Systems,” J. Symbolic
Computation, vol. 40(1), pp. 831–873, 2005.

[40] S. Withall, Software Requirement Patterns. Microsoft
Press, 2007.

8

http://msdl.cs.mcgill.ca/people/levi/AMT/material/
http://www.autosar.org

	Introduction
	A Model Transformation Intent Catalog
	Transformation Intent Catalog Scheme
	Common Transformation Intents
	Common Transformation Properties

	Overview of the Analysis Intent
	Applying the Analysis Intent to the Power Window Case Study
	Related Work
	Conclusion and Discussion
	References

