
Production Planning with IEC 62264 and PDDL
Bernhard Wally1, Jiří Vyskočil2, Petr Novák2, Christian Huemer1,

Radek Šindelář3, Petr Kadera2, Alexandra Mazak3 and Manuel Wimmer3

1Information Systems Engineering, TU Wien, Vienna, Austria, {lastname}@big.tuwien.ac.at
2CIIRC, CTU in Prague, Prague, Czech Republic, {firstname.lastname}@cvut.cz

3Business Informatics – SE, JKU Linz, Linz, Austria, {firstname.lastname}@jku.at

Abstract—Smart production systems need to be able to adapt
to changing environments and market needs. They have to reflect
changes in (i) the reconfiguration of the production systems
themselves, (ii) the processes they perform or (iii) the products
they produce. Manual intervention for system adaptation is costly
and potentially error-prone. In this article, we propose a model-
driven approach for the automatic generation and regeneration
of production plans that can be triggered anytime a change in
any of the three aforementioned parameters occurs.

Index Terms—Manufacturing Automation, Process Planning,
Model-driven Engineering

I. INTRODUCTION

Smart manufacturing environments require high flexibility
on various levels, such as flexibility of the production system
itself, flexibility on the products that are to be produced,
flexibility with respect to material routing, etc. This agility
is driven by the need for an adaptive organization [1], and it
can be achieved by establishing well-integrated IT-systems [2].
This integration will have to be implemented by internal
IT-systems, but also in accordance with external partners;
it can be achieved by providing models for the data to be
exchanged. These models are further of importance for many
other aspects of Industry 4.0, such as simulation, optimization
and data analytics [3] as well as the digital twin [4]. Such
models can be implicitly computed from operations data,
or they can be explicitly modeled in a traditional top-down
fashion. Either way, many concepts established in the software
engineering community in the field of model-driven software
engineering [5] can be beneficial in the context of smart
manufacturing, such as metamodeling, queries, views, and
model transformations [6].

In this work, we are presenting a model-driven approach for
generating production plans based on structural descriptions
of production systems, their processes, and the material to be
consumed and produced. It is a step towards the model-driven
smart factory [7]. The production plans can be recomputed
whenever a change in the system occurs, be it the production
system itself (e.g., new machinery, machine breakdown, etc.),
or the products that are being produced. Further, established
processes can be examined whether there exist better ways
to produce a certain good, or whether certain aspects of a
production plant are not required and could be shut down.

Industrial control programs are traditionally hard-coded in
the sense that they are programmed for producing a specific
product or sets of products and need manual reprogramming

in case a new kind of product is to be produced. In our
prototype, the production recipe is derived dynamically from
a production plan. The production plan, in turn, is generated
automatically from a production system model that describes
the available production resources and their capabilities, as
well as the material to be handled and produced.

The remainder of this article is structured as follows: after a
discussion of related work in Sec. II, we are providing back-
ground information in Sec. III and presenting our approach
and implementation in Sec. IV. Then, we are describing our
evaluation in the context of a real use case in Sec. V, before
concluding and providing future research directions in Sec. VI.

II. RELATED WORK

Already in [8], sophisticated production planning and
scheduling software was seen to play a key role for com-
panies to stay competitive, yet the availability and quality of
corresponding software was rather limited. Today, there exist
several planning and scheduling solutions, but as pointed out
in [9], these products have not been adopted on a wider scale.
Instead, it is noted in [9] that advanced production technology
could enable companies to be profitable even if they produce
very small lot-sizes with automated machinery by implement-
ing flexible production systems that allow “rapid changeovers
among different product”. This is one aspect that we want to
tackle with our approach: quickly creating production plans
for new, potentially customer-defined products.

A genetic algorithm approach for the planning of flexible
manufacturing systems has been presented in [10]. There, the
production problem was numerically encoded and then solved
using a genetic algorithm method. Different to our approach,
their production system was manually crafted towards their
genetic algorithm encoding, whereas we are using a standard-
ized production system modeling format for the specification
of the production system and generate planning information
thereof. Unfortunately, [10] also does not make any statements
on runtime and memory consumption of the algorithm with
respect to the problem and domain size.

Evolvable production systems is another term used to de-
scribe the dynamic nature of future-proof production sys-
tems [11]. Such systems should be able to facilitate the
shift from long-term vague production planning to short-
term precise production planning, thus increasing fast reaction
times, which is a requirement in today’s fast paced world.

978-1-7281-2927-3/19/$31.00 ©2019 IEEE 492

In [12], an automated assembly planning system is pre-
sented, that uses CAD assembly models to generate assembly
plans using minimal manual interventions. That work focuses
on the product design and the computation of a good sequence
of assembly steps. This is very much related to our work, and
the information retrieved by their work could be of significant
use to our approach when it comes to describing the relations
of the assembly parts. What is not included in [12] are the
capabilities of the production system and the planning of the
different assembly steps in a multi-machine shop-floor.

One approach to implement production flexibility is using
multi-agent systems, as depicted in [13]. In such a system,
multiple agents, situated on various levels of granularity of the
production system negotiate feasible production plans. Such
multi-agent systems are valid approaches for tackling various
planning and reconfiguration scenarios, as shown in [14].
In our work, we implement such flexible behavior on the
basis of a logics scheme, and we expand it from the pure
transportation system scenario to a more complex situation
involving transportation and product assembly.

Various systems for executing production plans have been
proposed, some of them are discussed in [15]. However,
model-driven generation of PDDL fragments from production
system models following international standards is not dis-
cussed there. Using PDDL for industrial problems is further
presented in [16], however, our approach differs in that it
utilizes PDDL as an intermediate format rather than a tool for
direct modeling by experts—the PDDL code is auto-generated
from a production system model.

III. BACKGROUND

In this section, we are presenting the concrete semantic
models and languages that are used for the modeling of the
production system and for the planning task: (i) an indus-
try standard for the description of the production system:
IEC 62264, and (ii) a well-established technology for planning
tasks: the planning domain description language (PDDL).

A. Industry Standard IEC 62264

IEC 62264 is a series of international standards that have
been originally published by the American National Standards
Institute and the International Society of Automation (ISA)
as early as 2000 under the name ISA-95 [17]. It comprises
five parts that have been released over the years. IEC 62264
has gained additional momentum recently [18]–[20], by be-
ing adopted by AutomationML [21], which is considered a
key enabling technology/standard for smart manufacturing by
many experts. Model-driven integration of IEC 62264 with
AutomationML has been described in [22].

For this work, we are using definitions from the latest
revisions of the international standards parts 2 and 4, which
have been standardized in [23] and [24], respectively. Part 2
defines metamodels, mostly in terms of Unified Modeling
Language (UML) class diagrams, which allow the speci-
fication of entities and classes-of-entities that are relevant
for specifying production systems and production processes.

The most relevant metamodels for this work are the ones
for equipment, material, process segments and operations
definitions. Part 4 provides more detailed metamodels for the
manufacturing operations management, but also some general
purpose metamodels, such as resource relationship networks.
We are using the latter for describing certain advanced aspects
of a production system.

With the following IEC 62264 concepts we are able to
describe a manufacturing facility in a detailed enough manner
in order to set up a workflow for automatically generating
production plans, as we will show later.

1) Equipment: describes the production sites, production
lines, machinery, etc. that is available, in an hierarchical order.
Equipment can be categorized by equipment classes and can
define properties (which are, in essence, named attributes of
type String).

2) Material: allows the specification of entities that are
consumed and produced during production. A specific kind
of material (e.g., a product, or a raw material) is defined by
a material definition, which can be categorized by material
classes. Specific instances of material definitions, i.e., pieces
of material that have a specific location where they can be
found, that have a mass, a serial number, etc., are modeled in
terms of material lots. A material definition may define from
which other material definitions it is assembled from, thus
providing a “bill of material” (BOM).

3) Process segments: describe the procedural capabilities
of a factory, or in other words, the composable production
steps that can be carried out with the available machinery and
personnel on a specific set of material. Each process segment
declares which kind of personnel or which person, which kind
(or piece) of equipment and which kind (or piece) of material,
and how much of each of it, is required to produce a certain
output material.

4) Operations definitions: when used for the configuration
of production steps (as opposed to maintenance, quality control
or inventory related tasks), the term “product definition” may
be used synonymously. In this case (which we are mostly
assuming in this work), an operations definition defines which
production steps (i.e., process segments) are required to pro-
duce a certain product and their product-specific parameters,
and the dependencies of these steps. As such, a product
definition describes a “bill of processes” (BOP) for making
a certain product.

5) Resource relationship networks: provide structures to
model connections between any kind of basic resource. In
our work these resources are equipment, material and process
segments. Connections specify a connection type so that they
can be semantically distinguished from each other.

B. Planning Task Language PDDL

PDDL was introduced in 1998 as the standardized Planning
Domain Definition Language (PDDL) for the 1st International
Planning Competition (IPC) [25]. Among its features was
the separation of the planning domain (i.e., the “vocabulary”
available) from the planning problem (i.e., a concrete problem

493

instance). Multiple planning problems can be defined for a
single planning domain. The latest revision of PDDL (3.1)
dates back to 2011 and supports important planning require-
ments such as timing information and numeric properties [26].
Today, there exist several derivations of PDDL that have forked
from various versions of PDDL—they add specific features for
certain use cases. However, these derivations have not been
adopted widely and only some their extensions have been
introduced to PDDL in later revisions. PDDL is traditionally
defined in terms of the Backus-Naur-Form (BNF) [27] and
has been updated over the years to accommodate additional
use cases to be competed for in the IPCs.

PDDL provides concepts for the description of planning
domains, including types, constants, predicates, functions and
actions, as well as for initializing problem instances, including
objects, initializations, a goal and a metric. PDDL solvers try
to find sequences of actions to reach the goal state from a
defined initial state.

1) Types: enable the definition of a single-inheritance type-
hierarchy. The default type is “object”, which is assumed for
all elements that have not defined an explicit type. Typing is
optional, nevertheless it is supported by most PDDL solvers.

2) Constants: object instances that are available already in
the domain definition (and later on in the problem definition).

3) Predicates: boolean statements that are bound to tuples
of objects at runtime. In the domain definition each predicate
is defining its name and the number and type of parameters.

4) Functions: definitions of numeric statements about tu-
ples of objects. In the domain definition a function defines the
types of objects allowed as parameters.

5) Actions: named steps a plan can rely on. Only through
actions the system state can be changed. An action defines a
set of optionally typed parameters that are then used in pre-
conditions and postconditions, which are ultimately predicate
statements on the provided parameters that can be (depending
on the supported extensions) combined using and, or, not,
imply, exists and forall. The extension durative-actions enables
actions to last a certain time and to clarify at which point in
time the pre- and postconditions shall hold.

6) Objects: are defined in problem statements and define
(in addition to the constants of the domain definition) the
known objects of the system under observation. Like constants,
they can be typed.

7) Initializations: a list of predicate and function initializa-
tions, representing the start system state.

8) Goal: a list of predicate instantiations that must be
satisfied. The goal declares the end system state.

9) Metric: an optional metric. Typically this is a function
that should be minimized or maximized. Based on the metric
PDDL solvers decide whether a newly found plan is superior
compared to an already computed plan.

IV. IMPLEMENTATION

We are using two distinct kinds of technology to solve
the automated planning of production steps and intermediate
inventory movements based on structurally defined production

systems: (i) we are defining the metamodels for the required
domains, and (ii) we are defining a workflow that incorporates
a PDDL solver for automatically finding production plans.

A. Creating the Metamodels
In a first step, we are creating what is called the “meta-

models” in model-driven engineering (MDE) [28] for the
technologies in use. Such a metamodel (i.e., a model of a
model) defines the “vocabulary” that can be used to express
certain occurrences in a specific domain.

1) IEC 62264: for the metamodel of IEC 62264 we are
following the standards documents of for part 2 [23] and part 4
[24] as closely as possible. There, most of the domain knowl-
edge is encoded in UML class diagrams, which corresponds to
the required format of metamodeling. Nevertheless, the class
diagram images from the standard have to be implemented in
terms of a metamodel, and not all information is encoded in
the class diagrams.

2) PDDL: the metamodel for PDDL is more difficult to
create, as it is only specified using BNF. Specifically, we are
using the PDDL BNF presented in [26], which represents
PDDL version 3.1. Since the automated generation of class
diagrams (and thus of metamodels) from BNF is not easily
achievable, as depicted in [29], we are manually crafting
a corresponding metamodel. We are not completely imple-
menting PDDL 3.1, but a large subset that allows modeling
of the required features of our use case. We include sup-
port for typing, fluents, universal-preconditions, disjunctive-
preconditions, existential-preconditions, equality, conditional-
effects, duration-inequalities, durative-actions and numeric-
fluents. With all that, we can implement our envisioned domain
and problem descriptions for production planning.

B. Tooling Support
To realize the proposed approach, the following tool deci-

sions have to be taken: (i) the MDE framework and (ii) the
PDDL solving environment.

1) Model-driven engineering: metamodels are created us-
ing the Eclipse Modeling Framework (EMF) and Ecore (as the
meta-metamodel). For the generation of “flat” files (i.e., non-
Ecore-model files, which are required at the interface between
the modeling tools and the PDDL solver), we rely on the Xtend
framework. With this basic tooling, it is very natural to use
Java as the main programming language, which we have done.

2) PDDL solver: in order to create meaningful production
plans, we have to consider production time. Thus, we are
targeting PDDL solvers with support for durative actions, so
that the production plan can be optimized towards the lowest
lead time. We are using the LPG-td PDDL solver [30], which
is described in detail in [31]. It supports durative actions,
being the main requirement. Unfortunately, it does not support
conditional effects, which would allow elegant formulations
with respect to setting mutexes on certain items. Instead, we
need to pass them as arguments to some of the actions, which
significantly increases the search space. Switching to another
PDDL solver with broader capabilities would be an option that
is to be explored in future research endeavours.

494

C. Software Implementation

The software implementation comprises (i) a general work-
flow that orchestrates the diverse transformation and compu-
tation steps and (ii) the transformation tasks from IEC 62264
to PDDL and vice versa.

1) Workflow: we are implementing the workflow depicted
in Fig. 1, which can be described in more detail as follows:

1) Initially, the production system model needs to be cre-
ated, in terms of an IEC 62264 model instance. In our
approach, this creation itself is a multi-step process that
involves a model-to-model transformation from a pro-
prietary transportation system model into an IEC 62264
model as well as handcrafting additional equipment,
material and process segment information.

2) In a second step, one or more goal states have to be
modeled in a separate IEC 62264 model.

3) In the first “Convert” task, the production system model
and the goal state models are used as input to produce
a PDDL domain model and one PDDL problem model
per goal state model. The PDDL models are then se-
rialized into “flat” PDDL files to be read by standard
PDDL solvers. More information on this conversion pro-
cess is given in the next subsection “Transformations”
(Sec. IV-C2).

4) The “Calculate” task invokes (for each problem file) a
PDDL solver process in order to compute a plan. The
computed PDDL plans (or null, if no plan could be
found) are then handed over to the next task.

5) The second “Convert” task parses the “flat” plan files
into PDDL plan models and creates one IEC 62264
operations definition per plan. For each plan its action
calls are converted operations segments and added to the
operations definition. The operations definitions are then
injected into the initial production system model.

6) The output of this workflow is an IEC 62264 model that
contains one or more automatically generated operations
definitions.

2) Transformations: due to space constraints, we are fo-
cusing on the first “Convert” task of the workflow; from
an IEC 62264 model to PDDL models, which is the most
important and innovative part of the proposed approach.

Fig. 1: Implemented workflow (expressed in Business Pro-
cess Model and Notation [32]). Yellow data objects (in the
upper swimlane) depict Ecore models, blue data objects (on
the swimlane border) represent “flat” files that need to be
generated and parsed as part of the orange “Convert” tasks.

Since we are using durative actions, we need to discuss how
the duration of the actions is determined. In our case, this
is realized twofold: (i) pick-and-place processes are defining
their duration using the standard duration field of IEC 62264
process segments, (ii) inventory movement duration is cal-
culated depending on the length of the movement and the
underlying transportation system topology. For instance, in
monorail intra-logistics transportation systems, such as the one
that we are using in our evaluation (cf. Sec. V), the moving
shuttles need considerably more time to move over a switch
than they would need for moving the same distance on a
straight line. We are using PDDL functions to accommodate
for this special timing behavior. Line 4 in Lst. 1 depicts the
application of the shuttle-time function in the context of
the MoveShuttle durative action. Concrete timing informa-
tion is created in corresponding PDDL problem files in terms
of function initializations, as depicted in Lst. 2.

In order to discuss the conversion from an IEC 62264 model
to a PDDL domain file, we pick the Assemble process
segment of our evaluation as our use case. This Assemble
process segment describes the situation that a robot, which
carries a “pickable” material lot, places this material lot on
top of another one, thus performing an assembly.

The “header” of the corresponding durative action is de-
picted in Lst. 1. The process segment itself is transformed
into a durative action (line 6), the duration attribute (specifying
5 s) is converted to a duration statement with a fixed length
of 5 (line 11). Note, that all timing information is converted
to seconds. The resource segment specifications of the process
segment are transformed into parameters of the durative action
(lines 7–10). Eventually given resource segment specification
properties are used as pre- or postconditions, if they are tagged
with the terms pddl:pre or pddl:post, respectively.

The conversion tasks adds another parameter to the durative
action, which has not been specified in the IEC 62264 model:
SUBCARRIER. It is added based on the knowledge that the
production system of the use case is based on an intra-logistics
system where the moving shuttles move between “positioning
units” (PUs), which need to be physically locked in order to
perform assembly operations—this issue is discussed below.

Lines 14–24 in Lst. 1 depicts the part of the precondition
that deals with the question, whether a given PICKABLE
material lot may be mounted onto a BASE material lot as
part of the given ASSEMBLY material lot. This question is
answered by looking for material definitions (lines 15–17)
that are the material definitions of the given material lots
(lines 19–21) and for which the corresponding relations are
defined (lines 22–24). The used predicates do not change over
time in the given use case, as such the time specification could
be set to anything; we chose start (line 14).

Lines 26–33 of Lst. 1 clarifies how the previously dis-
cussed SUBCARRIER parameter is used: in line 27 it is
made clear, that the following clauses are only required to
hold if the CARRIER is of equipment class Shuttle (the
other possibility would be Table). (i) the SUBCARRIER
(which is the equipment which is underneath the CARRIER)

495

Listing 1: Excerpts of the generated PDDL domain file.
1 ;... [several lines left out] ...
2 (:durative-action MoveShuttle
3 :parameters (?SHUTTLE ?FROM ?TO - Equipment)
4 :duration (= ?duration (shuttle-time ?FROM ?TO))
5 ;... [several lines left out] ...
6 (:durative-action Assemble
7 :parameters (?ROBOT ?CARRIER - Equipment
8 ?PICKABLE ?BASE ?ASSEMBLY
9 ?BASEPLATE - MaterialLot
10 ?SUBCARRIER - Equipment)
11 :duration (= ?duration 5)
12 :condition
13 ;... [several lines left out] ...
14 (at start
15 (exists (?AMD - MaterialDefinition
16 ?PMD - MaterialDefinition
17 ?BMD - MaterialDefinition)
18 (and
19 (MaterialDefined ?ASSEMBLY ?AMD)
20 (MaterialDefined ?PICKABLE ?PMD)
21 (MaterialDefined ?BASE ?BMD)
22 (MaterialDefinitionAssembly ?AMD ?PMD)
23 (MaterialDefinitionAssembly ?AMD ?BMD)
24 (Mountable ?PMD ?BMD))))
25 ;... [several lines left out] ...
26 (over all
27 (imply (EquipmentClassed ?CARRIER EC_Shuttle)
28 (and
29 (EquipmentClassed ?SUBCARRIER
30 EC_PositioningUnit)
31 (EquipmentLocation ?CARRIER ?SUBCARRIER)
32 (ReachesTo ?ROBOT ?SUBCARRIER)
33 (PositioningUnitLocked ?SUBCARRIER))))
34 :effect (and
35 (at end (not (RobotOccupied ?ROBOT)))
36 (at start (EquipmentMutex ?SUBCARRIER))
37 (at end (not (EquipmentMutex ?SUBCARRIER)))
38 (at end (MaterialLocation ?PICKABLE ?CARRIER))
39 (at end (not (MaterialLocation ?PICKABLE
40 ?ROBOT)))
41 (at end (Mounted ?PICKABLE ?BASE))
42 (at end (not (MaterialRaw ?PICKABLE)))
43 (at end (not (MaterialRaw ?BASE)))
44 (at end (MaterialLotAssembly ?ASSEMBLY
45 ?PICKABLE))
46 (at end (MaterialLotAssembly ?ASSEMBLY ?BASE))
47 (at end (Mounted ?ASSEMBLY ?BASEPLATE))
48 (at end (MaterialLocation ?ASSEMBLY ?CARRIER))))

Listing 2: Excerpt of the generated PDDL problem file,
showing a function initialization for moving the shuttle from
a positioning unit to a track switch.
1 (= (shuttle-time E_PositioningUnit-MachiningCenter-3

↪→ E_TrackSwitch-Join-02) 3.04)

must be of equipment class PositioningUnit, (ii) the
CARRIER must be located at this SUBCARRIER, (iii) the
ROBOT performing the assembly must be able to reach to
the SUBCARRIER and (iv) the SUBCARRIER, which is a
PositioningUnit, must be locked.

We are skipping the rest of the preconditions due to limited
space and now attend to the effect of the durative action, which
is depicted in lines 34–48 of Lst. 1. Most of the effect is
equal to the effect of the Place durative action that is defined
in accordance with the equally named process segment. The
Assemble specific effects are listed in lines 41–48: (i) the
PICKABLE is now mounted on the BASE material, (ii) both

materials are tagged as being no longer “raw”, (iii) the
ASSEMBLY, which is the item to be built, now physically
consists of the two materials, (iv) and the ASSEMBLY is
correctly located.

V. EVALUATION

We are evaluating our approach based on a real industrial
system that has been built at the Czech Institute of Informatics,
Robotics, and Cybernetics (CIIRC) for studying Industry 4.0
scenarios, the Industry 4.0 Testbed (cf. Fig. 2).

A. Use Case

The layout of the testbed is presented in Fig. 3; it comprises
an intralogistics monorail transportation system by montratec
GmbH and four 6-axis robots. Each of the robot has a
dedicated table where it can manipulate material. In addition,
each robot can handle material that is located at adjacent PUs.
A PU is a hardware device that is mounted to the monorail
track—it provides a well-defined location for shuttles running
on the monorail track to stop. Further, PUs can activate a
hardware lock, physically holding a contained shuttle in place,
which is required for precise material handling. This implies
that the lock must be open in case a shuttle is entering or
exiting a PU.

Fig. 2: The Industry 4.0 testbed located at CIIRC.

In order to simplify the transportation system for the plan-
ning task, we have abstracted it to only consist of positioning
units and switches (nodes) that are connected via edges. The
weights of the edges between transportation system switches
and positioning units are computed from (i) the lengths of the
participating elements that form the basis of this abstracted
topology, (ii) the average shuttle movement speed, and (iii) a
penalty of 2 s when traversing a switch. We are assuming
a fixed average speed of the shuttles of 0.56m/s, which
corresponds to the mean of the maximum (0.92m/s) and the
reduced running speed (0.2m/s), as given in [33].

We are building a very simple LEGO pickup car as out
production use case, comprising three parts, as depicted in
Fig. 4. We consider each of the parts already pre-assembled by
one of the three 6-axis robots (R1-3) in the production system;
these parts are located on the tables (T1-3) in front of these
robots. The goal is to have the finally assembled pickup ready
for take-away at table T10. This goal statement is expressed

496

Fig. 3: Layout of the Industry 4.0 Testbed. Blue nodes depict positioning units, green nodes depict switches. The working area
of each robot is marked with a yellow ellipse.

in terms of a small IEC 62264 model that is interpreted in the
“Convert” task that produces the domain and problem files.

B. Production System Variations

In our evaluation, we are testing the feasibility of our
approach with respect to the generation of PDDL code that
can be solved by off-the-shelf PDDL solvers in due time. In
order to assess the behavior in different scenarios, we create
three variants of the production system and product:
1.1 Variant Pickup (PP): the production system as depicted

in Fig. 3, and the product as depicted in Fig. 4. The
transportation system comprises three shuttles, that are
initially located at P100, P10, and P50.

1.2 Variant One Shuttle (OS): the production system as
depicted in Fig. 3, and the product as depicted in Fig. 4.
Only one shuttle is available, it is located at P100.

1.3 Variant Large Pickup (LP): the production system as
depicted in Fig. 3, and the product a variation of Fig. 4:
a large pickup consists of a chassis with two cabins and
two bodies. Shuttle configuration as in (1).

In order to further test the performance of the PDDL solvers,
we generate three different kinds of PDDL code with respect
to the durative aspect of the planning problem:
2.1 Variant Durative Actions (DA): we are rendering PDDL

code containing durative actions (Sec. IV).
2.2 Variant Non Durative (ND): same as (1), but normal

actions are used instead of durative ones. The duration
is encoded as cost of the action.

Fig. 4: The pickup model to be built, made up from
three prebuilt sub-modules: (black) chassis, (red) cabin, and
(white) body. Model is used in the “PP” and “OS” use cases.

2.3 Variant No Cost (NC): same as (2), but durations/cost are
not encoded at all; instead the number of actions is used
to assess the quality of a plan.

Further, we create two variants of the PDDL domain de-
scription with respect to the locking and unlocking of the PUs:
3.1 Variant Verbose (VB): PUs can be physically locked. In a

direct conversion from IEC 62264 to PDDL, locking and
unlocking are two distinct actions that can be triggered
anytime.

3.2 Variant Optimized (OP): unlocking stays a separate ac-
tion, but locking is built into a variation of the move
shuttle action: move shuttle and lock. This
speeds up the solving process, as it prevents the solver
from attempting lock-unlock-lock-unlock-... chains.

After the IEC 62264 models are converted to PDDL
files in different variations, they are fed into the PDDL
solvers. Durative action (DA) variations are solved by
LPG-td, for the non-durative actions we are using Fast
Downward [34], as it performs better than LPG-td in
all non-durative scenarios. Fast Downward is config-
ured with A* as search engine, and four evaluator set-
tings are competing against each other: (1) astar(ipdb),
(2) astar(ff, ipdb), (3) astar(sum([cea, ff]), ipdb), and
(4) astar(sum([cea, g]), ipdb).

C. Results and Findings

Computation is realized on a standard PC from 2008
@2.83GHz with 4GB RAM and 1369GB swap space (of
which 345GB on SSD and 1024GB on HDD) for the DA
use cases and on a standard laptop from 2013 @2.4GHz with
16GB RAM for the ND and NC use cases. This makes the
results not directly comparable with respect to the search time,
but the massive amount of memory required for the DA use
cases implied heavy use of swap space, which slowed down
the computation process, making the time-related results not
directly comparable anyway.

Tbl. I depicts the results from running the different vari-
ations on the respective solvers. The first column, Sce-
nario, depicts the selected variant composition—for instance,
PP-DA-OP means “Pickup” with “Durative Actions” and
“Optimized” locking code. Subsequent rows in the table

497

highlight what has changed in comparison with the previous
row. The second column, Evaluator, shows which evaluator
setting for the A* search has provided the best result—in
case multiple evaluator settings have provided equally costly
results, the one that reached it in the shortest time is selected.
Durative action (DA) use cases are run on LPG-td with
standard evaluator, depicted as “–”. The Time column shows
the time (in seconds) that was required to compute the plan,
Memory depicts the peak memory (in megabytes) that was
consumed. Cost shows the cost of the plan. In case of durative
(DA) and non-durative (ND) use cases, this corresponds to the
duration of executing the plan in seconds, in case of non-cost
(NC) use cases, it shows the number of steps.

An example for a computed temporal PDDL plan is given in
Lst. 3: it resembles the best solution that could be computed in
a 4 hours time frame for scenario PP-DA-VB. This particular
plan was found after 4617.05 s.

The following findings can be obtained from the results:
1) Approach: using MDE techniques proved useful in our

use cases. Meaningful PDDL representations could be found,
and they could be used to run standard PDDL solvers upon.

2) Durative Actions: in general, temporal PDDL solvers
can be used for the planning of small problems, but they are
slow and memory demanding. Instead of that, a more feasible
solution would be to use a PDDL planner for the planning
of more simplified problems (without durative actions) and
then use some scheduling algorithm to perform a given set of
actions (already found by planner) using a limited number of
resources in a limited amount of time as it is recommended
in [35]. Another approach would be to solve the planning
problem in a sequential fashion and then post-process the plan
by parallelizing subsequent actions.

3) Optimization: smart design of actions in the PDDL
domain can significantly increase computational efficiency.
Except for one case, where a fast yet rather approximate
evaluator setting successfully found the best plan for the
given problem, the optimized OP variants are usually less

Scenario Evaluator Time (s) Memory (MB) Cost

PP-DA-OP – 4865.03 582 800.00 84.49
-VB – 4617.05 583 400.00 83.49

-ND-OP 1 4.18 70.30 153.00
-VB 2 30.80 90.60 153.00

-NC-OP 2 1.31 36.00 31.00
-VB 4 0.73 35.54 34.00

OS-DA-OP – 937.90 210 300.00 125.37
-VB – 962.16 210 200.00 123.87

-ND-OP 1 0.02 34.22 153.00
-VB 2 0.91 36.35 153.00

-NC-OP 1 0.02 34.22 32.00
-VB 2 0.91 36.09 35.00

LP-DA-OP – 14 232.18 1 130 800.00 105.83
-VB – 12 762.90 1 131 300.00 104.83

-ND-OP 2 12.62 55.06 240.00
-VB 4 174.88 185.25 240.00

-NC-OP 2 5.63 42.01 44.00
-VB 4 19.13 52.35 47.00

TABLE I: Performance of PDDL solvers in different scenarios.

memory demanding and much faster for the tested sequential
planner. The temporal planner was not strongly affected by
these optimization efforts.

4) Summary: usage of sequential PDDL planners seems to
be feasible on small and middle sized production lines but
needs to be further tested on larger use-cases. Temporal plan-
ning using durative actions, however, seems to be unfeasible,
even for small scenarios.

VI. CONCLUSION

We have presented an approach for the automated genera-
tion of production plans based on structural descriptions of the
production system and the products to be produced thereon.
The production system model was created as an instance of
an industry standard based metamodel: IEC 62264. The model
was transformed into PDDL format, production plans have
been generated and fed back into the production system model.

We have evaluated our approach on real hardware, the CI-
IRC Industry 4.0 Testbed, in various scenarios, incorporating
several variations of PDDL code generation and compared the
performance of PDDL solvers on these variants. The main
findings are: (i) quality of the generated code matters and
(ii) complex PDDL features such as durative actions demand
extremely much from the underlying processing hardware,
especially with respect to available memory.

Future work will include (i) further evaluation of durative
actions on processing hardware comprising more physical
RAM in order to better compare search speed and involvement
of different temporal solvers and (ii) setting up a workflow
for the post-processing of sequential plans for ex post action
parallelization.

ACKNOWLEDGMENT

Financial support by the Austrian Fed. Ministry for Digital
and Economic Affairs and the Nat. Foundation for Research,
Technology and Development is gratefully acknowledged, as
well as support by the DAMiAS project funded by the Tech-
nology Agency of the Czech Republic, by the H2020 project
DIGICOR, and by the OP VVV DMS project Cluster 4.0.

REFERENCES

[1] J. Davis, T. Edgar, J. Porter, J. Bernaden, and M. Sarli, “Smart manufac-
turing, manufacturing intelligence and demand-dynamic performance,”
Computers & Chemical Engineering, vol. 47, pp. 145–156, 2012.

[2] R. Anderl, “Industrie 4.0—advanced engineering of smart products and
smart production,” in Proc. 19th Int. Seminar on High Technology, 2014.

[3] A. Kusiak, “Smart manufacturing,” International Journal of Production
Research, vol. 56, no. 1–2, pp. 508–517, 2018.

[4] F. Tao, J. Cheng, Q. Qi, M. Zhang, H. Zhang, and F. Sui, “Digital twin-
driven product design, manufacturing and service with big data,” Int. J.
Advanced Manufacturing Tech., vol. 94, no. 9–12, pp. 3563–3576, 2018.

[5] S. Kent, “Model driven engineering,” in Proc. 3rd Int. Conf. on Inte-
grated Formal Methods (IFM), ser. LNCS, vol. 2335, 2002, pp. 286–298.

[6] D. C. Schmidt, “Model-driven engineering,” COMPUTER, vol. 39, no. 2,
pp. 25–31, 2006.

[7] J. Cadavid, M. Alférez, S. Gérard, and P. Tessier, “Conceiving the
model-driven smart factory,” in Proc. Int. Conf. on Software and System
Processes (ICSSP), 2015, pp. 72–76.

[8] E. A. Silver, D. F. Pyke, and R. Peterson, Inventory Management and
Production Planning and Scheduling, 3rd ed., 1998.

498

Listing 3: Generated production plan for use case PP-DA-VB, including timing information (in seconds). Line format:
<start>: (<action> <parameters>*) [<duration>].

0.0002: (MoveShuttle E_Shuttle-1 E_PositioningUnit-IO-1 E_TrackSwitch-Arena-01) [4.18]
0.0002: (MoveShuttle E_Shuttle-3 E_PositioningUnit-Buffer E_TrackSwitch-Join-05) [9.69]
0.0002: (Pick E_Robot-2 E_Table-2 ML_Body1 ML_LegoBaseplate-Table-2) [5.00]
0.0002: (Pick E_Robot-3 E_Table-3 ML_Chassis1 ML_LegoBaseplate-Table-3) [5.00]
4.1805: (MoveShuttle E_Shuttle-1 E_TrackSwitch-Arena-01 E_TrackSwitch-Join-01) [5.92]
9.6905: (MoveShuttle E_Shuttle-3 E_TrackSwitch-Join-05 E_TrackSwitch-Arena-01) [6.21]
10.1007: (MoveShuttle E_Shuttle-1 E_TrackSwitch-Join-01 E_TrackSwitch-Divide-01) [4.97]
15.0710: (MoveShuttle E_Shuttle-1 E_TrackSwitch-Divide-01 E_PositioningUnit-MachiningCenter-3) [3.04]
15.9007: (MoveShuttle E_Shuttle-3 E_TrackSwitch-Arena-01 E_TrackSwitch-Join-01) [5.92]
17.6115: (LockPositioningUnit E_PositioningUnit-MachiningCenter-3) [0.50]
18.1117: (Place E_Robot-3 E_Shuttle-1 ML_Chassis1 ML_LegoBaseplate-Shuttle-1 E_PositioningUnit-MachiningCenter-3) [5.00]
21.8210: (MoveShuttle E_Shuttle-3 E_TrackSwitch-Join-01 E_TrackSwitch-Divide-01) [4.97]
23.1122: (UnlockPositioningUnit E_PositioningUnit-MachiningCenter-3) [0.50]
23.6125: (MoveShuttle E_Shuttle-1 E_PositioningUnit-MachiningCenter-3 E_TrackSwitch-Join-02) [3.04]
26.6528: (MoveShuttle E_Shuttle-1 E_TrackSwitch-Join-02 E_TrackSwitch-Join-01) [8.89]
26.7912: (MoveShuttle E_Shuttle-3 E_TrackSwitch-Divide-01 E_TrackSwitch-Divide-02) [4.97]
31.7615: (MoveShuttle E_Shuttle-3 E_TrackSwitch-Divide-02 E_PositioningUnit-MachiningCenter-2) [3.04]
34.3020: (LockPositioningUnit E_PositioningUnit-MachiningCenter-2) [0.50]
34.8023: (Place E_Robot-2 E_Shuttle-3 ML_Body1 ML_LegoBaseplate-Shuttle-3 E_PositioningUnit-MachiningCenter-2) [5.00]
35.5430: (MoveShuttle E_Shuttle-1 E_TrackSwitch-Join-01 E_TrackSwitch-Divide-01) [4.97]
39.8025: (Pick E_Robot-1 E_Shuttle-3 ML_Body1 ML_LegoBaseplate-Shuttle-3 E_PositioningUnit-MachiningCenter-2) [5.00]
40.5133: (MoveShuttle E_Shuttle-1 E_TrackSwitch-Divide-01 E_TrackSwitch-Divide-02) [4.97]
45.4835: (MoveShuttle E_Shuttle-1 E_TrackSwitch-Divide-02 E_TrackSwitch-Divide-03) [4.97]
50.4538: (MoveShuttle E_Shuttle-1 E_TrackSwitch-Divide-03 E_PositioningUnit-MachiningCenter-1) [3.04]
52.9943: (LockPositioningUnit E_PositioningUnit-MachiningCenter-1) [0.50]
53.4945: (Pick E_Robot-10 E_Shuttle-1 ML_Chassis1 ML_LegoBaseplate-Shuttle-1 E_PositioningUnit-MachiningCenter-1) [5.00]
58.4948: (Place E_Robot-1 E_Shuttle-1 ML_Body1 ML_LegoBaseplate-Shuttle-1 E_PositioningUnit-MachiningCenter-1) [5.00]
58.4948: (Place E_Robot-10 E_Table-10 ML_Chassis1 ML_LegoBaseplate-Table-10) [5.00]
63.4950: (Pick E_Robot-10 E_Shuttle-1 ML_Body1 ML_LegoBaseplate-Shuttle-1 E_PositioningUnit-MachiningCenter-1) [5.00]
63.4950: (Pick E_Robot-1 E_Table-1 ML_Cabin1 ML_LegoBaseplate-Table-1) [5.00]
68.4953: (Assemble E_Robot-10 E_Table-10 ML_Body1 ML_Chassis1 ML_Pickup1 ML_LegoBaseplate-Table-10 E_Table-10) [5.00]
68.4953: (Place E_Robot-1 E_Shuttle-1 ML_Cabin1 ML_LegoBaseplate-Shuttle-1 E_PositioningUnit-MachiningCenter-1) [5.00]
73.4955: (Pick E_Robot-10 E_Shuttle-1 ML_Cabin1 ML_LegoBaseplate-Shuttle-1 E_PositioningUnit-MachiningCenter-1) [5.00]
78.4958: (Assemble E_Robot-10 E_Table-10 ML_Cabin1 ML_Chassis1 ML_Pickup1 ML_LegoBaseplate-Table-10 E_Table-10) [5.00]

[9] E. A. Silver, D. F. Pyke, and D. J. Thomas, Inventory and Production
Management in Supply Chains, 4th ed., 2017.

[10] J.-H. Chen and S.-Y. Ho, “A novel approach to production planning of
flexible manufacturing systems using an efficient multi-objective genetic
algorithm,” Int. J. Machine Tools and Manufacture, vol. 45, no. 7, 2005.

[11] H. Akillioglu and M. Onori, “Evolvable production systems and im-
pacts on production planning,” in IEEE Int. Symp. on Assembly and
Manufacturing (ISAM), 2011.

[12] L. D. Xu, C. Wang, Z. Bi, and J. Yu, “AutoAssem: An automated
assembly planning system for complex products,” IEEE Transactions
on Industrial Informatics, vol. 8, no. 3, pp. 669–678, 2012.

[13] L. Monostori, J. Váncza, and S. R. T. Kumara, “Agent-based systems
for manufacturing,” CIRP Annals, vol. 55, no. 2, pp. 697–720, 2006.

[14] W. Lepuschitz, B. Groessing, and M. Merdan, “Automation agents for
controlling the physical components of a transportation system,” in
Industrial Agents, 2015, pp. 323–339.

[15] T. Niemueller, T. Hofmann, and G. Lakemeyer, “CLIPS-based execution
for PDDL planners,” in Proc. WS on Integrated Planning, Acting, and
Execution (IntEx), 2018.

[16] A. Rogalla, A. Fay, and O. Niggemann, “Improved domain modeling for
realistic automated planning and scheduling in discrete manufacturing,”
in Proc. 23rd IEEE Int. Conf. on Emerging Technologies and Factory
Automation (ETFA), 2018, pp. 464–471.

[17] American National Standards Institute (ANSI), Enterprise-Control Sys-
tem Integration Part 1: Models and Terminology, ANSI Standard, 2000.

[18] B. Wally, C. Huemer, and A. Mazak, “Entwining plant engineering data
and ERP information: Vertical integration with AutomationML and ISA-
95,” in Proc. 3rd IEEE Int. Conf. on Control, Automation and Robotics
(ICCAR), 2017.

[19] B. Wally, “Provisioning for MES and ERP,” TU Wien and Automa-
tionML e.V., Application Recommendation, 2018.

[20] B. Wally, C. Huemer, A. Mazak, and M. Wimmer, “IEC 62264-2 for
AutomationML,” in Proc. 5th AutomationML User Conference, 2018.

[21] International Electrotechnical Commission (IEC), Engineering data ex-
change format for use in industrial automation systems engineering—
Automation Markup Language—Part 1: Architecture and general re-
quirements, 2018.

[22] B. Wally, C. Huemer, and A. Mazak, “A view on model-driven verti-
cal integration: Alignment of production facility models and business
models,” in Proc. 13th IEEE Int. Conf. on Automation Science and
Engineering (CASE), 2017.

[23] International Electrotechnical Commission (IEC), Enterprise-control
system integration—Part 2: Objects and attributes for enterprise-control
system integration, 2013.

[24] ——, Enterprise-control system integration—Part 4: Object model at-
tributes for manufacturing operations management integration, 2015.

[25] M. Ghallab, A. Howe, C. Knoblock, D. McDermott, A. Ram, M. Veloso,
D. Weld, and D. Wilkins, PDDL—The Planning Domain Definition
Language, APIS-98 Planning Competition Committee, 1998.

[26] D. L. Kovacs, “Complete BNF description of PDDL 3.1,” Department
of Measurement and Information Systems, Budapest University of
Technology and Economics, Language Specification, 2011.

[27] D. E. Knuth, “Backus normal form vs. backus naur form,” Commun.
ACM, vol. 7, no. 12, pp. 735–736, 1964.

[28] S. J. Mellor, K. Scott, A. Uhl, and D. Weise, “Model-driven architec-
ture,” in Advances in Object-Oriented Information Systems, J.-M. Bruel
and Z. Bellahsene, Eds., 2002, pp. 290–297.

[29] A. Bergmayr and M. Wimmer, “Generating metamodels from grammars
by combining transformation and by-example techniques,” in Proc. 1st
Int. WS on MDE By Example (MDEBE), 2013.

[30] A. Gerevini, A. Saetti, I. Serina, and P. Toninelli, “Planning in PDDL 2.2
domains with LPG-TD,” in Booklet of the Int. Planning Comp., 2004.

[31] A. Gerevini, A. Saetti, and I. Serina, “An approach to temporal planning
and scheduling in domains with predictable exogenous events,” Journal
of Artificial Intelligence Research, vol. 25, pp. 187–231, 2006.

[32] Object Management Group (OMG), Business Process Model and Nota-
tion (BPMN), Specification formal/13-12-09, Rev. 2.0.2, 2013.

[33] montratec GmbH, “montrac design guide 2017/2018,” Manual, 2018.
[34] M. Helmert, “The fast downward planning system,” Journal of Artificial

Intelligence Research, vol. 26, pp. 191–246, 2006.
[35] M. Ghallab, D. Nau, and P. Traverso, Automated Planning: Theory and

Practice, ser. Artificial Intelligence. Morgan Kaufmann, 2004.

499

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

