Preprint - original version
doi.org/10.1145/3194164.3194172

can found at

https://

Design Debt Prioritization

A Design Best Practice-Based Approach

Reinhold Plosch
Johannes Kepler University Linz
Linz, Austria
reinhold.ploesch@jku.at

Matthias Saft
Corporate Technology Siemens AG
Munich, Germany
matthias.saft@siemens.com

ABSTRACT

Technical debt (TD) in a software system is a metaphor that tries to
illustrate the remediation effort of the already introduced quality
deficit and the impact thereof to the business value of the system.
To address TD, various management activities are proposed, each
addressing a particular purpose. Whereas the activities of debt iden-
tification and measurement are broadly considered in literature, the
activities of debt prioritization and communication lack appropriate
approaches with an economic perspective. This work proposes a
TD prioritization approach. Therefore, it narrows down the focus
of TD to design debt and relies on the quantification of design
best practices. Further, the non-conformance of these practices is
assessed by applying a benchmarking technique. As a result, the
gained information is transferred into a portfolio-matrix to support
the prioritization and communication of design remediation actions.
The applicability and suitability of the approach are demonstrated
by using the source code of the open source project GeoGebra.

CCS CONCEPTS

« Software and its engineering — Software design tradeoffs;
Maintaining software; Software verification and validation;

KEYWORDS
design quality, technical debt, design debt, debt prioritization

ACM Reference Format:

Reinhold Plésch, Johannes Briuer, Matthias Saft, and Christian Kérner.
2018. Design Debt Prioritization: A Design Best Practice-Based Approach.
In TechDebt ’18: TechDebt ’18: International Conference on Technical Debt ,
May 27-28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 10 pages.
hitps://doi.org/10.1145/3194164.3194172

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

TechDebt ’18, May 27-28, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5713-5/18/05...$15.00
https://doi.org/10.1145/3194164.3194172

Johannes Brauer
Johannes Kepler University Linz
Linz, Austria
johannes.braeuer@jku.at

Christian Korner
Corporate Technology Siemens AG
Munich, Germany
christian.koerner@siemens.com

1 INTRODUCTION

The technical debt (TD) metaphor in the context of software was
first introduced by Ward Cunningham in 1992 [8]. For the last
7-10 years, it has been rising in popularity within the software
development community and is used as a mechanism to label and
communicate (internal) software quality issues, hidden risks for
future development and maintenance, as well as the costs incurred.
Doing things in software development “quick and dirty” (which is
often a deliberate decision) is like incurring debt that causes interest
payments in terms of extra efforts to be spent in the future (similar
to financial debt). Consequently, technical debt (TD) expresses the
effort necessary to clean up software as well as the extra costs.

According to [17], TD can be divided into ten coarse-grained TD
types: requirement, architectural, design, code, test, build, documen-
tation, infrastructure, versioning, and defect debt. In the literature,
the type that gains most attention is code debt, followed by architec-
tural, test, and design debt [2, 17]. A similar picture of the different
TD types is given by [1], with the one exception that code debt is
not as dominant in the literature according to their findings. In this
work, we narrow down the focus of TD to design debt based on
our previous work in this research area and the identified lack of
literature. For the sake of clarification, we rely on the definition
of design debt as mentioned in [2]. There, the authors refer to the
violation of design principles in respect of design debt and classify
it in between code and architectural debt.

To deal with existing debt in a software system or to prevent
potential debt from being introduced, Li et al. [17] identified and
propose eight TD management activities. These eight activities are
the identification, measurement, prioritization, prevention, moni-
toring, repayment, documentation, and communication of TD. From
this set, identification (detection of TD by using techniques such as
static code analysis), measurement (quantification of TD by using
estimation techniques), and repayment (resolving TD by techniques
such as re-engineering or refactoring) receive the most attention
in scientific literature with support of appropriate tools and ap-
proaches [17]. Consequently, there is a lack of research for other
activities but an identified need from practitioners and industry.
For instance, prioritizing (ranking of identified TD according to
pre-defined rules) is mostly based on hunches, experience, and
knowledge regarding the code base, but without method support
and exact numerical values [28].

https://doi.org/10.1145/3194164.3194172
https://doi.org/10.1145/3194164.3194172
reinhold
Schreibmaschinentext
Preprint - original version can found at https://doi.org/10.1145/3194164.3194172

TechDebt '18, May 27-28, 2018, Gothenburg, Sweden

This work contributes especially to the activity of prioritizing
TD, in particular design debt, by identifying and measuring vio-
lations of design best practices. These design best practices were
systematically derived from fundamental design principles such
as information hiding, single responsibility, or open-closed prin-
ciple, and were empirically examined regarding their importance
[4]. Besides, we developed a tool called MUSE that can identify
the design best practice violations directly in the source code for
projects written in Java, C#, and C++ [23]. This tool, therefore, con-
tributes to the identification and measurement of TD. The result of
a MUSE application is a list of violations of design best practices
that is transferred into a portfolio matrix, which is used to prioritize
identified issues and to communicate design debt (visualization of
TD to discuss and manage it appropriately) to the developers and
stakeholders.

The goal of this work is to propose and discuss a method for pri-
oritizing and communicating design debt. To illustrate this method
by means of a case study, this work uses the open source project
GeoGebra.! By means of the case study, we also touch upon the
management activities’ identification and measurement but do not
focus on them.

The remainder of the paper is structured as follows: Section 2
presents and discusses related work in the context of identifica-
tion, measurement, prioritization, and communication of design
debt. Section 3 presents our approach for identifying and mea-
suring design debt based on violated design best practices and our
benchmarking-based approach. Section 4 presents our prioritization
approach and Section 5 applies this approach to the open-source
project GeoGebra. Section 6 discusses the benefits and limitations
of our approach and Section 7 draws some conclusions and presents
ideas for future work.

2 RELATED WORK

As mentioned in the introduction, this work addresses the TD ac-
tivities of identifying, measuring, prioritizing, and communicating
design debt. Thus, this section provides a state-of-the-art overview
of these activities based on the mapping study of Li et al. [17] and
extended by recent approaches.

2.1 Design Debt Identification

To identify design debt, a set of approaches has emerged from
the research field of measuring and assessing design quality. For
example, in [13] the authors propose a metric-based approach that
relies on simple metrics such as lines of code or number of bug
reports, as well as more complex metrics such as lack of cohesion.
Regardless of which metric set is used, each metric is accompanied
with threshold values that define the acceptance range of the metric
and help to identify design debt.

While considerable effort has been undertaken to increase the
accuracy of metric-based measurement results in the context of TD
[14], the general issues of using metrics to express design aspects
were already criticized in [18]. Thus, instead of using metrics, which
are too fine-grained for design concerns when used in isolation, the
approach of identifying (code and) design smells has emerged [18].
A design smell that embodies a symptom of the software design is

Uhttps://www.geogebra.org/

R. Plosch et al.

a good indicator of parts that should be refactored. For instance,
a god class — as one example of a design smell — may reveal a
class that is overloaded with functionality and should be divided
into smaller and more appropriate abstractions. An approach for
detecting design smells in the context of design debt is shown for
eight design smells in [19] and for two smells in [10].

Another group of researchers pursued the idea of using design
smells as an indicator for design debt [30]. In their particular study,
they concentrated on the design smell of a god class and identified
the symptoms in two software systems. Their results show that god
classes are more frequently changed. Consequently, they contain
more design debt than other classes and are worth monitoring and
managing [30]. Based on these findings, the group enhanced their
approach and incorporated, for instance, the identification of rule
violations from the static code analysis tool FindBugs into their
design debt identification approach [31, 32]. As a conclusion, this
provides a more elaborate view on design debt.

The idea of using rule violations of static code analysis tools
has also been applied to other approaches, which mainly focus on
code debt but are transferrable to design concerns. Software Quality
Assessment based on Lifecycle Expectations (SQALE), for instance,
provides a TD calculation model that includes three abstraction
levels for defining quality: characteristics, sub-characteristics, and
(rule-based) requirements [15]. Thus, the lowest abstraction level
represents the rules (from a static code analysis tool) that identify
the design debt through non-compliance directly in the source code
[16]. A second approach was recently published in the Object Man-
agement Group (OMG) standard for automated TD measure [11].
The foundations of this standard are 86 source code measures (rules)
for the quality characteristics maintainability, reliability, security,
and performance efficiency [27]. Lastly, the Software Improvement
Group (SIG) proposed a TD model, which uses the source code
analysis tool Software Analysis Tool (SAT) for identifying TD in
source code [21].

2.2 Design Debt Measurement

After the identification of design debt through methods mentioned
before, it is necessary to quantify the remediation effort by using
appropriate estimation techniques. For assessing metric-based mea-
sures, [13] proposes interpretation functions. These functions take
the input value and map it to an interval between 0 and 1, where 0
means no occurrence and 1 represents the maximum occurrence of
the issue. The most difficult step in defining these interpretation
functions is the definition of the thresholds that specify the gate for
0 and 1 [13]. The authors in [13] propose relying on historical data
and experience from earlier projects. Despite the threshold issue,
this approach does not propose a method to aggregate the result of
interpretation functions to a value expressing design debt.

In contrast, [19] shows a design debt measurement approach that
operationalizes the impact of identified design smells, which are
then aggregated to a single value called the Debt Symptoms Index
(DSI). In more detail, the impact of a design smell is characterized by
three factors. The first factor is the influence, which expresses how
strongly a design smell affects the criteria of good design according
to [7]. To evaluate this influence, seven senior software designers
were interviewed. The second factor is the granularity of the design

Design Debt Prioritization

smell referring to the design entities (e.g., class and method) that
it affects. Finally, the third factor is the severity of each identified
design smell measured by one or more metrics. By combining these
three factors for each identified design smell, a Flaw Impact Score
(FIS) can be calculated. Finally, adding up all impact scores and
normalizing this sum by the lines of code of the system returns the
DSI.

While the DSI quantifies design debt in a single value that can
be monitored over multiple releases, the value fails to express the
actual effort or financial cost associated with the identified debt [19].
In contrast, the SQALE approach calculates the total of the required
effort to fix all violations for each rule in a straightforward way
[15]. The mechanism to calculate the effort to fix a violation can
be configured by either a linear function for increasing effort with
an optional offset (e.g., the time required only once to understand
a specific rule) or a constant flat rate for fixing any violations of
a rule. The resulting TD is given in person-days and computed as
follows.

2 rutes effortToFix(violations,yje)
8[hr/day]

Similar to SQALE, the OMG standard proposes an aggregation
model to predict future corrective maintenance costs based on the
identified rule violations. Therefore, the standard provides a default
remediation effort (and effort range) for fixing the occurrence of
a particular rule violation [11]. These values were derived from
interviews with developers from several organizations.

SIG uses another approach compared with the aforementioned
methods. Instead of relying on absolute effort estimations, each
debt item is evaluated by comparing it with a benchmark base (of
44 systems) [21]. If it is within the top 5% of the products in the
benchmark base, the respective item receives a 5-star rating. If it is
in the next 30%, it receives a 4-star rating, and so on. If it is in the
worst 5% of the products, it receives only a single star. Based on the
star rating of a software product (as-is state), the effort to increase
the quality of the product to the ideal quality level is estimated.

Due to the lack of further design debt measurement approaches,
this discussion slightly touches upon the field of code debt for
additional ideas. The CAST approach, for instance, proposes a model
that relies on coding violations similar to the SQALE approach [9].
Before these violations are used as a source for the calculation of TD,
they are grouped into low, medium, and high severity categories.
The CAST approach assumes that only a fraction of the violations is
required to be repaired in the future in order to keep the application
productive, i.e., 50% of the high severity violations, 25% of medium
violations, and 10% of low severity violations. Regardless of the
severity, addressing a single violation is assumed to take one hour
and cost $75 on average. In conclusion, the CAST model calculates
code debt using the following formula:

RC =

ef fortToFix(violations) =
violations * ef fortPerViolation + of f'set, Function = linear
constantEf fort, Function = constant

TD = (50% high severity + 25% medium severity +
10% low severity) = 1 [hr to fix a single violation] = $75 [cost [hr]

The model has been applied in practice to several hundreds of
software projects of different industry segments, sizes, and tech-
nologies. Based on the data of these applications, the authors state

TechDebt *18, May 27-28, 2018, Gothenburg, Sweden

that each of the investigated projects is burdened with an average
code debt of $3.61 per lines of code [25]. However, in [9] the authors
experienced other values for TD when using alternative estimates
as values for the parameters in their formula. They calculated an av-
erage of $15.62, which is considerably different from the originally
proposed value.

2.3 Design Debt Prioritization

With a design debt measurement, the effort of remediation actions
is quantified and can be used for decisions about improvement
actions. However, developers are left in the dark as to where to
start addressing the debt and which identified issues are worth it.
Consequently, the next TD management activity concentrates on
prioritizing identified design debt. Therefore, it is required to con-
sider debt from a business value perspective. This view is expressed
by non-remediation costs representing the negative consequences
on the business value of a project due to remaining debt.

One of the approaches that supports this activity was proposed
by [29]. There, the authors continue the idea of identifying and
measuring design smells — in particular, god classes — in the source
code, which are evaluated according to their refactoring cost and
the quality gained from the refactoring. To identify the god class,
[29] utilize the detection strategy for a god class as proposed by [18].
This detection strategy is a combination of three object-oriented
metrics including concrete threshold values. In the course of the
prioritization approach, this detection strategy also defines the cost
of paying back design debt because the authors argue that classes
that are slightly outside the thresholds will be easier to refactor
than classes that have multiple magnitudes outside the accepted
gates.

The second dimension, which represents the impact of debt on
quality, is determined by the quality characteristics of correctness
and maintainability [29]. While [29] operationalize correctness by
calculating the defect likelihood, maintainability is measured by
the changing likelihood of an identified god class. The combination
of these two characteristics returns an assessment of the quality
enhancement gained from refactoring a particular god class.

GodClass:
. O

e
&
8
AN
~GodClassB —GodClassd
11—
Cﬁodcla $s7
g / /]'6
g5 podClassé 0dClass2
g|
E a4
/~GodClass5
3 v
L1, ~godciassy
1
1 2 3 4 5 7 8 9
[more effort > .

Figure 1: Prioritization of God Classes, from [29]

TechDebt '18, May 27-28, 2018, Gothenburg, Sweden

Given these two assessments of each god class, the prioritization
approach continues with a combination and visualization thereof.
The result of this step is a prioritization matrix as depicted in Figure
1. According to the arrangement of the identified issues in the
matrix, concrete remediation actions can be derived. In more detail,
development resources should be invested in those god classes that
are on or above the diagonal [29]. The reason, therefore, is that
they tend to have a balanced effort/impact ranking or even a higher
quality gain in relation to the required effort.

An improvement of the SQALE method (v1.0, see [16]) includes a
business impact estimation model that represents the business per-
spective of TD. It is used to prioritize the remediation actions for the
non-conformities of those issues that have the highest/best return
ratio. For this, SQALE considers different types of non-remediation
(see Table 1) with an associated factor for each type to quantify the
penalty for each violation of the respective type.

To calculate the so-called business impact index, it is necessary
to sum up all non-remediation factors with a given scope. This
quantifies the business impact of the identified findings (i.e., rule
violations - see Section 2.2) made on the code. Based on this index
and the TD assessment from the measurement approach, the SQALE
approach arranges the identified debt within a two-dimensional
field, as shown in Figure 2. The interpretation of this graph is similar
to the previous approach because the issues with the lowest debt
but highest business impact are in the top left corner. In other words,
the higher the slope of each item (as shown by the shaded area),
the more lucrative the investment in it [16].

In the further course of this work, we present a prioritization
approach that is based on portfolio techniques, although another
group of researchers also use the portfolio term in this context [12].
To be more concrete, the group proposes a portfolio approach for
TD management, which addresses the goals of prioritization but
from a more general point of view [12]. Thus, they pursue the idea of
characterizing each TD item (design, defect, test, or documentation
debt) by a defined template, which requires the estimation of the
cost (principal), scope (interest amount), and change likelihood
(interest probability) [26]. Based on these characterizations, the
project release planning should then consider those TD items with

Table 1: Sample of Non-Remediation Factors [16]

NC Description Type Non-Rem.
Type Sample Factor
Blocking Will or may result in a Division by 5,000
bug Zero
High Will have a high/direct Copy and 250
impact on the paste
maintainance cost
Medium Will have a Complex 50
medium/potential impact logic
on the maintainance cost
Low Will have a low impact Naming 15
on the maintainance cost convention
Report Very low impact, it is just ~ Presentation 2
a remediation cost report issue

R. Plosch et al.

> 8
.
(]

. (13 ° oo . °
g - * . - .
E °
2 ® o
H ® °® °
= i - X (1]

® $ °°

L] ® o 00

ebe ®, eooe®

:. "o e

c." ® Pooee

01 10 100 100.0 1,000.0
Technical debt

Figure 2: Prioritization based on SQALE method, from [16]

the highest scope and change likelihood as well as the lowest cost
estimation.

2.4 Design Debt Communication

The last TD activity considered in this section is the communication
of design debt. According to the mapping study of Li et al. [17],
there is just one work available that addresses this task. This is
the SQALE method that tries to express the business impact of TD,
which facilitates the communication to stakeholders, who might
not be as technically involved in the software system compared
with developers. Besides, decisions for additional development and
maintenance resources are easier to find and to manage based on a
business impact perspective.

3 DESIGN DEBT IDENTIFICATION AND
MEASUREMENT

This section presents the techniques we pursue when identifying
and measuring design debt.

3.1 Identification of Design Best Practice
Violations

In previous work, we focused on the general aim of measuring,
assessing, and improving the design quality of an object-oriented
software system [22]. Although there are different approaches avail-
able that try to achieve the same goal, we identified a lack of proper
guidance for software developers and designers throughout the
design improvement process. Consequently, we proposed the novel
idea of operationalizing the compliance of source codes with fun-
damental design principles such as the information hiding, single
responsibility, or don’t repeat yourself principle. However, due to
the problem that these principles are still too vague to be measured,
more tangible design best practices were systematically derived
from the principle descriptions. Finally, the relationship between
the design principles and design best practices were transferred
into a design quality model [22], which was subject to empirical
investigations [5].

Design Debt Prioritization

While the design quality model could be used to discuss design
debt on the level of design principles or even design quality at-
tributes, this work narrows down the focus to the level of design
best practices. An example of such a design best practice (design
heuristic according to [24]) is AvoidPublicFields, which negatively
affects information hiding when violated [5]. The main advantage
of design best practices is that they are concrete enough to be prop-
erly applied by software developers and their adherence can be
verified by using static code analysis.

To automate the identification of design best practice violations,
we developed a tool called MUSE that currently implements 67
design best practices for the three object-oriented programming
languages C++, C#, and Java; for the latter, 49 out of the 67 are
applicable [23]. Whereas the entire tool chain of MUSE is explained
in [23], the final result of its execution on a project is a list of
identified design best practice violations, including the number of
checked entities (e.g., no. of classes, methods, or fields). Besides,
each violation is linked to the source code to easily guide software
developers to the origin of the design debt.

3.2 Benchmarking-Oriented Measurement

After the identification of design best practice violations, the person
who investigates the results has to figure out whether the number of
violations is acceptable or represents debt that needs to be paid off.
Based on our experience in assessing code quality and design qual-
ity ([20] and [6], respectively), we propose an assessment approach
that is based on the benchmarking concept. In general, benchmark-
ing is a well-established concept in many business areas where
(similar) objects (e.g., products, services, processes, organizations)
are checked against each other for specific purposes, for instance,
the evaluation of the value of an object or to derive suggestions for
improvement. In the context of this work, we apply this approach
to the judgment of design debt.

Therefore, it is necessary to build a benchmark database that
contains the quality data of all reference projects. In this context, it
is adequate to store the number of design best practice violations
for each practice and for each reference project. In addition, we
store values of various size metrics for each project that are needed
for normalizing the absolute values. As mentioned before, MUSE
provides this data, which are computed for each reference project
and then stored in the benchmark database.

Based on the benchmark database, a benchmark suite has to be
built that is tailored to a specific application context. In other words,
the suite comprises only those projects that are selected as adequate
reference projects. Afterwards, we calculate a value distribution for
each measure on the basis of their normalized values. As a result,
these value distributions reflect commonly used statistical figures
such as quartiles quintiles, deciles, or percentiles. Figure 3 depicts a
quartile like value distribution and divides the normalized values of
the measured reference projects into four areas, Q-area to Q4-area,
which are delimitated with the minimum and maximum values of
the benchmark suite projects, respectively. If an investigated project
is below the benchmark minimum, it is in the additional Qg-area.
Vice versa, this also applies to the maximum value. A project is
classified within the Qs-area if it exceeds the maximum.

TechDebt *18, May 27-28, 2018, Gothenburg, Sweden

1st Quartile 2nd Quartile 3rd Quartile
Min ‘ ‘ | Max
0.0000 0.0068 0.0114 0.0502 0.9251
> | < > | < > | < > | > | <
Qo Qi Q2 Q3 Q4 as

Figure 3: Benchmark distribution in quartiles

Given this value distribution for each design best practice, the
number of design best practice violations of the investigated project
can be checked against the given distribution for retrieving the
achieved quartile. If, for instance, a design best practice has 300
violations in 500 classes and the value distribution of the best prac-
tice is like Figure 3, the normalized value (300/500 = 0.6) is between
0.0502 and 0.9251, resulting in a quality index of Q4. In this par-
ticular example, Qg4 indicates a comparison with the worst 25% of
projects in the benchmark suite (25% of projects with a very high
number of violations of this design best practice).

The result of the benchmarking-oriented measurement approach
is a judgment of the design debt by the achieved quality quartile
for each design best practice of the investigated project. This al-
ready provides an indicator for prioritizing design debt, when the
project aims at a target quartile level. In other words, the number
of violations of those design best practices that are higher than the
target quartile needs to be reduced. Although this addresses the TD
activity of prioritization, we consider prioritization from a more
elaborate view, as shown next.

4 DESIGN DEBT PRIORITIZATION AND
COMMUNICATION

The identification and measurement of design debt are important
activities for design debt management. However, without properly
prioritizing and communicating design flaws, it is difficult to address
the debt with the highest return on investment. This section shows
the approach we propose for these activities.

4.1 Importance of Design Best Pratices

While the benchmark-oriented measurement approach derives a
quality level (quality index) for each design best practice, it is un-
clear whether the design best practice is important to achieve good
object-oriented design. We disclosed this uncertainty by conducting
an online survey among 214 participants, who had to judge the
importance of a set of design best practices [4]. For the sake of
completeness, we narrowed down the focus of the online survey to
Java-related best practices due to the concentration on Java-based
systems in our evaluations. Nevertheless, from the survey result
we derived a default importance and a standard deviation for each
Java design best practice. Based on the importance assessment and
a quality index for each design best practice of the investigated
project, prioritization tasks are supported by these two viewpoints.

4.2 Portfolio-Based Prioritzation

For properly communicating a prioritization result, we propose a
portfolio-based assessment approach, as briefly introduced in [6].
This approach combines the importance with the quality index and
provides an arrangement of the measured design best practices

TechDebt '18, May 27-28, 2018, Gothenburg, Sweden

vh
Immediate
Investment Area

Selective
Investment Area I h

m

Selective
Investment Area I1

Restricted 1 Iy

Investment Area

A

vl

Qo O Q2 Q3 Q4 Q5

Figure 4: Investment areas of portfolio matrix

within a portfolio matrix. Figure 4 depicts this matrix for the mea-
surement result of a particular project; in total, the 49 design best
practices for Java are presented. Taking care of all 49 best practices
is time expensive and could be overwhelming for the project team.
Thus, the portfolio-based assessment approach groups the design
best practices into four so-called investment areas highlighted in
different colors.

The dark gray area is the immediate investment area, which
contains design best practices that have high design debt and are
considered as (very) important. Consequently, investing improve-
ment effort into these design best practices returns the highest
quality gain. Next, the light gray and blue areas are called selective
investment areas, meaning that they are worth investing in design
enhancements based on selective criteria. Hence, it is recommended
to choose those design best practices that are relevant to the project
without over-engineering different parts or investing in unimpor-
tant design aspects. Lastly, the very light gray area in the bottom
left corner is the restricted investment area that contains design
best practices with good quality and low importance. Investing
effort into this corner is not recommended.

This conceptual framework of the portfolio-based assessment
approach was discussed with senior developers from industry and
characterized by using a feasibility study [3, 6]. These explorative
investigations returned a very positive feedback with regard to
narrowing down the measurement result and to directing the focus
of design discussions to those that are in the immediate investment
area. In these discussions, we proposed an aggressive improvement
strategy, meaning that the overall design goal is to have no viola-
tions in the immediate investment area. While some developers
agreed in achieving this goal, others would pursue a more selective
and conservative strategy.

4.3 Overall Design Debt Prioritization
Approach

Considering the presentations in Sections 4.1 and 4.2, we propose
the following design debt prioritization approach:

1. Define the importance of design best practices: For this purpose,
projects can rely on the default importance derived from
our survey on the importance of design best practices [5].
In case this default importance does not reflect the quality
needs of the projects, derivations of this default importance
are acceptable as long as they remain within the defined
boundaries of our survey findings [4].

R. Plosch et al.

2. Define investment strategy: The investment strategy defines
the quality goals using the portfolio matrix without being
distracted by the possible costs of fixing the revealed design
debt. The proposed default strategy is to move all design best
practices out of the immediate investment area. A less of-
fensive strategy could be to move only design best practices
with a very high importance out of the immediate invest-
ment area. Another strategy could be to move all design
best practices (regardless of their importance) to the next
quartile.

3. Consider business needs: It might not be reasonable to fol-
low the selected investment strategy for the entire product
but to differentiate on the component level. Typically, differ-
ent components have different importance levels from the
perspective of the business value. The investment strategy
should be aligned with these business needs. Sometimes,
business needs are also reflected in technology roadmaps
that define which components are re-engineered in the fu-
ture. Investing in components that are to be re-engineered
in the near future definitely needs a different investment
strategy than components that are already aligned with the
technology goals of the product or project.

For the sake of simplicity, we presented our portfolio approach
on the level of an entire project. In reality, a more differentiated
view with different investment strategies on the component level
might be necessary to meet the business needs. Nevertheless, this
does not falsify our improvement approach but just makes clear
that these different needs can be easily fulfilled.

Based on our current experience from previous investigations,
it can be summarized that the proposed approach leads a project
team to a design quality assessment — represented by the portfolio-
matrix — in a gradually and jointly manner. Further, the retrieved
assessment incorporates the opinions of involved stakeholders and
can be easily communicated to others. For instance, we observed
that an external person that may not be part of the development
process can intuitively grasp the quality state of the product to
judge whether it is worth to invest effort in paying off debt.

5 APPLICATION OF THE APPROACH

In the further course of this work, we present our implementation
of the design debt management activities with respect to an open-
source project. Besides, we discuss and provide suggestions for
prioritization strategies that go beyond the previously proposed
ideas and consider, for instance, the business needs of the project.

5.1 Study Object

The study project of this work is the GeoGebra project, which is one
of the leading open source software products for teaching MINT
subjects in particular mathematics. The investigated revision of
GeoGebra is revision number 57818, as downloaded from the open-
source repository on 14™ November, 2017. When considering the
amount of Java source code, this revision has 844,066 logical lines
of code. Further, a component-based analysis of the project shows
that it consists in its core of a web and desktop component, both
building on a common kernel component.

Design Debt Prioritization

5.2 Design Debt Measurement and
Prioritization

To identify design debt in GeoGebra, we executed MUSE containing
the 49 design best practices for Java. This execution derived the
violations of each design best practice as well as entity sizes for
normalizing the number of violations. These normalized values
were then checked against a benchmark suite to derive the quality
index as described in Section 3. For the sake of clarification, we
pre-defined the benchmark suite and relied on 50 reference projects
that amount to 4.55 million logical lines of code and have proven to
be solid for this type of investigation (see benchmark suite defined
in the Appendix of [6]).

In order to define the importance of each design best practice,
we relied on the findings from the conducted survey [4]. Finally,
we mapped the design best practices into our portfolio-matrix to
provide a more elaborate view of the measurement result (80,717
violations in total), as shown in Figure 5. Accordingly, GeoGebra
has quite some design debt, as highlighted by the 26 design best
practices in the immediate investment area, of which 19 practices
fall in Q4. In total, these 26 best practices are responsible for 47,108
violations.

Considering all violations as equal is unfair because they differ in
their severity and in regard to the design entity they operationalize.
For instance, the design best practice AvoidPackageCycles identifies
cycles on package level and requires a restructuring of the packages
to break up the cycle. In contrast, AvoidPublicFields is a practice that
works on the level of class fields and forces a reconsideration of
their visibility. To differ between the various design best practices,
the design quality model (as mentioned in Section 3.1) specifies the
assignment of design best practices to product parts. The product
parts affected by the 49 design best practices are listed in Table 2.

While issues related to methods, for instance, are less time con-
suming to fix compared with package problems, we assigned dif-
ferent remediation costs to each product part. In other words, we
assume that fixing a violation with respect to a class violation takes
ten minutes compared with a package issue that takes one hour.
These remediation costs can be used as suggested but can, of course,
be replaced by other values derived, for example, from experience
gained with refactoring in the past. Despite the circumstance that
we will use the assumed remediation costs throughout the paper, it

vh

vl

Qo QU1 Q2 Q3 Q4 Q5

Figure 5: Portfolio matrix of design debt measurement

TechDebt *18, May 27-28, 2018, Gothenburg, Sweden

Table 2: Assumed Remediation Costs

Product Remediation
part cost in minutes
Interface 3
Method 5
Class 10
Type 10
Source Code 20
Package 60
Component 60

is important to mention that their values do not impact the under-
lying concept of the approach, which is in focus of the work.

Based on these assumptions and the assignment of design best
practices to product parts, it is possible to calculate the total amount
of required time effort. For GeoGebra and the identified design debt
of 80,717 violations, the effort would accumulate to 9.55 person-
years when assessing a year with 1,600 working hours. Investing
this much effort for removing debt that may have a negative impact
on quality attributes (e.g., maintainability, understandability, or
functional suitability) is inefficient for the business needs of the
product. Hence, our first recommendation for a more focused design
debt prioritization is to narrow down to those design best practice
violations that are in the immediate investment area.

5.3 Improvement Strategy Consideration

As previously mentioned, 26 design best practices are in the imme-
diate investment area, which is visualized by the dark grey shading
in Figure 5. Accordingly, an aggressive investment strategy could
define the quality goal of having no design best practice in this
area. Therefore, it is necessary to move, for instance, a design best
practice from field Q4/vh to Q1/vh or a practice from Q4/m to Q3/m.
In other words, this improvement strategy does not force an elimi-
nation of all violations but rather the number of violations that is
necessary to achieve one of the selective investment areas. Table 3
provides an overview of the 26 design best practices and depicts
the number of fixed violations required to achieve the quality goal.

According to this table, 26,271 violations must be addressed to
move all design best practices out of the immediate investment area.
This number represents a reduction of the total number of viola-
tions by 32.5%. In considering the impacted product factors of each
violation and by using the assumed remediation cost from Table
2, these violations cause a maintenance effort of 3.84 person-years.
While the consideration of the aggressive improvement strategy
reduces the workload by 40.2%, this is still a high effort to invest.
Consequently, it is necessary to go one step further and to focus
concrete design debt mitigation actions on those items that are
worth improving from a business perspective.

5.4 Business Need Consideration

When talking about design debt, we argue that the consideration
of business needs is important to avoid investing resources into
product components that are end of life or will be replaced by
newer technologies. Valuable hints for these business needs are

TechDebt '18, May 27-28, 2018, Gothenburg, Sweden

Table 3: Design Debt Measurement

. No. of

Design best practice No. (,)f v required

olations fixes
AvoidDuplicates 4,482 2,207
AvoidUsingSubtypesInSupertypes 49 36
AvoidPackageCycles 2,562 1,981
AvoidCommandsInQueryMethods 1,223 956
AvoidPublicFields 743 733
DocumentInterfaces 2,619 1,296
AvoidLongParameterLists 374 246
UselnterfacesIfPossible 17,653 11,339
AvoidStronglyCoupledPackages 115 36
DontReturnUninvolvedDataFromCommands 335 31
UseCompositionNotInheritance 275 176
DocumentPublicClasses 1,012 518
AvoidPublicStaticFields 62 39
AvoidDiamondInheritanceStructuresInterfaces 461 316
AvoidLongMethods 1,373 744
AvoidSimilarNamesForDifferentDesignElements 48 48
AvoidUnusedAbstractions 123 15
CheckUnsuitableFunctionalityOfClass 182 72
AvoidSimilarAbstractions 24 24
UselnterfacesAsReturnType 5,301 3,363
AvoidSimilarNamesForSameDesignElements 696 439
AvoidRepetitionOfPackageNamesOnAPath 3 3
AvoidRuntimeTypeldentification 5,268 1,189
AvoidDirectObjectInstantiations 939 182
CheckUnusedSupertypes 574 274
AvoidMassiveCommentsInCode 612 8
Sum: 47,108 26,271

product roadmaps and development plans (see also Section 4.3).
They contain the information of up-coming features or obsolete
components due to changing customer requirements. Furthermore,
the identification of those components that show the most develop-
ment activities is another source of interest for prioritizing design
enhancement actions.

In the context of the GeoGebra project, we applied the idea of
concentrating improvement actions on the component that is cur-
rently most actively enhanced. Therefore, we analyzed the last 400
commits on the source code repository conducted within the last
two weeks (up until 14t November). In more detail, we analyzed
changes in the source code from revision 57418 to 57818 and iden-
tified the component with the most delete, add, and modify file
actions. From 460 deleted, added, or modified files within the last
400 commits, 146 files from the /geogebra/web component were
affected. In relation to the size of this component and compared
with the others, /geogebra/web was identified as the part of the
project with the most development activities.

R. Plosch et al.

vh

vl

Qo Q1 Q2 Q3 Q4 Q5

Figure 6: Portfolio matrix of design debt measurement for
web package

Based on this concentration to the web component, a re-execution
of MUSE returns a slightly different design debt picture. In more
detail and as shown in Figure 6, this component has a lower de-
sign debt than the entire GeoGebra project because the number of
design best practices in the immediate investment area decreases
from 26 to 21. Besides, for three design best practices the compo-
nent is performing even better than the entire benchmark suite, as
depicted by the practices in column Qy. In contrast, four design

Table 4: Design Debt Measurement for Web Package

. No. of

Design best practice No. (.)f v required

olations fixes
AvoidPackageCycles 561 491
AvoidCommandsInQueryMethods 116 88
AvoidPublicFields 28 27
DocumentInterfaces 1,090 782
UselnterfacesIfPossible 1,410 924
AvoidNonCohesivePackages 13 1
UseCompositionNotInheritance 102 77
DocumentPublicClasses 209 151
AvoidPublicStaticFields 4 2
AvoidDiamondInheritanceStructuresInterfaces 169 143
AvoidLongMethods 117 24
AvoidSimilarNamesForDifferentDesignElements 4 4
AvoidUnusedAbstractions 21 9
CheckUnsuitableFunctionalityOfClass 21 9
UselnterfacesAsReturnType 553 305
AvoidSimilarNamesForSameDesignElements 32 9
AvoidRepetitionOfPackageNamesOnAPath 1 1
CheckUnusedSupertypes 99 57
AbstractPackagesShouldNotDependOnOtherPkg. 14 3
DontReturnMutableCollectionsOrArrays 33 6
AvoidMassiveCommentsInCode 107 18
Sum: 8,651 3,131

Design Debt Prioritization

best practices move to Qs, meaning that the normalized number of
violations is worse than the highest benchmark value. In particular,
these are the design best practices AvoidPackageCycles, UseCompo-
sitionNotInheritance, AvoidDiamondInheritanceStructuresInterfaces,
and CheckUnusedSupertypes.

Regardless of the detailed design debt changes, the improvement
strategy recommends an investment in the dark grey area to move
all practices out of it. Therefore, Table 4 highlights the number of
violations that need to be fixed for each design best practice. In total,
there are 3,131 violations representing 3.88% of all identified design
issues in the GeoGebra project. From the viewpoint of maintenance
effort in workload, the remaining list of violations accumulates 0.52
person-years. Communicating this debt value to a stakeholder is
convincing, as it addresses the most relevant design debt issues
(high importance and bad quality state) and considers the business
need, identified by the component with the highest development
activities.

6 DISCUSSION

The presented design debt prioritization approach has benefits for
practitioners but comes with some limitations. Both sides will be
summarized and discussed below.

6.1 Benefits

Design best practices are the items measured by the approach. To be
more specific, design debt is operationalized by the violations and
non-compliance of these design best practices in the source code.
The list of practices is not a set of randomly selected guidelines, but
rather is systematically derived from fundamental design principles
and put in relation by using a formal design quality model [22].
Besides, the role of these design best practices in the context of
design principles, which positively impact design quality, is further
examined with 31 senior software developers divided into six fo-
cus groups [5]. For an unrelated design principle investigation of
the practices, an online survey among 214 participants empirically
determined their individual importance [4]. In conclusion, the ap-
proach can beneficially rely on well-investigated practices that are
(1) important for object-oriented design, (2) concrete enough to be
followed by practitioners (a circumstance that is difficult to achieve
when focusing on design principles), and (3) specific enough to be
identified by an automated measurement tool.

This approach implements the measurement tool MUSE to iden-
tify design best practice violations [23]. For the sake of clarification,
the approach is not limited to this tool. In fact, it is possible to apply
any static analysis tool, including static code analyzer.

After a measurement, the result is mapped into the portfolio-
matrix to determine those design debt issues that are considered to
be (very) important but achieve a bad quality state. This step nar-
rows down the measurement result to those design best practices
that should be further considered. Moreover, it is easier to commu-
nicate real design flaws without getting lost in details that are not
worth being discussed. For instance, time is lost when discussing
a violation of a practice, which is assessed to be unimportant or
already within a good quality state (compared to the benchmark).

Another advantage of the proposed approach is the business-
related differentiation of design best practice violations. Taking into

TechDebt *18, May 27-28, 2018, Gothenburg, Sweden

account that violations of the same design best practice differ in
their business impact, it is important to adjust the approach to the
business needs of the project. For example, the analysis can focus on
components that will undergo feature extensions. This provides the
benefit of concentrating improvement actions in software parts that
have a high return on investment and are unlikely to be replaced
in the near future.

In conclusion, the approach achieves a focused view on design
debt by drilling down the measurement result to the most relevant
design debt issues and to product parts with a high business impact.

6.2 Limitations

In the presented approach, a benchmarking technique is applied
to judge the achieved quality state. While the used technique pro-
vides weights for achieving a different quality index, building the
benchmark base or deriving the benchmark suite are disadvantages
of the proposed approach. In fact, identifying relevant reference
projects is difficult because projects are usually subject to different
constraints, apply different technologies, or simply differ in their
size. Consequently, building a benchmark base requires a trade-
off in using the most appropriate projects. For a company, this is
quite difficult since there is limited access to similar projects in the
corresponding domain.

Nevertheless, current trends in software engineering motivate
the practical application of a benchmark-based technique since
companies pursue a service-oriented development approach with
a focus on building small and independent services, which are or-
chestrated to an application that serves the customer’s needs [33].
All these small services — so-called microservices — are deployable
projects that could represent the reference projects in the bench-
mark base. Thus, it would be possible to compare a project with
all services developed by the company, a task that was difficult in
former times due to the thinking in monolithic systems with little
chance of finding comparable subjects.

7 CONCLUSION AND FUTURE WORK

In this work, we presented a comprehensive approach for identify-
ing, measuring, prioritizing, and communicating design debt. The
TD management activities of identifying and measuring design debt
with our approach are already targeted towards prioritization, as
the identification and measuring are based on violated design best
practices, which is an advantage compared to metric or smell-based
approaches, as all of these practices provide very concrete hints
regarding what to improve in the source code.

For the quantification, such as for the measuring of the design
debt, we rely on a similar approach as [25], i.e., we quantify the
remediation costs for a single violation of a design best practice with
a fixed time factor. Other approaches for calculating the remediation
costs, e.g. relying on historic data, are easily incorporable in our
approach without invalidating the general prioritization approach.

For the TD management of prioritization, we rely on a port-
folio matrix with the importance of the design best practice and
the achieved quality index (calculated with our benchmarking ap-
proach) as the two dimensions of the portfolio. Investment strate-
gies, like moving all violations of design best practices out of the
immediate investment area of the portfolio, can be used to prioritize

TechDebt '18, May 27-28, 2018, Gothenburg, Sweden

design debt resolution. To concentrate the prioritization further,
business needs can be considered, which might affect the general
improvement strategy and will also narrow the focus to selected
core components of a system. The portfolio matrix used also helps
to support the TD management activity of communicating the
design debt.

Applying our approach to the open-source project GeoGebra
shows that the prioritization approach works well, as it reduces the
effort (for fixing all identified problems) from 9.55 person-years to a
reasonable 0.52 person-years. The achieved prioritization seems to
be reasonable, although we were not able to validate the suitability
of the results with the GeoGebra team.

As future work, we therefore first have to perform a suitabil-
ity study in a real-word context that focuses on the utility of the
portfolio-based assessment approach for deriving design improve-
ment actions. The central question here is whether our portfolio-
based TD approach helps in defining the improvement actions.

A minor but still interesting point is the development of a more
elaborate model for estimating the remediation costs of design
best practices based on more basic refactoring tasks that have to
be carried out. This could also help to objectify remediation cost
estimations.

REFERENCES

[1] Nicolli S.R. Alves, Thiago S. Mendes, Manoel G. de Mendonga, Rodrigo O. Spinola,
Forrest Shull, and Carolyn Seaman. 2016. Identification and management of
technical debt: A systematic mapping study. Information and Software Technology
70, Supplement C (2016), 100-121. https://doi.org/10.1016/j.infsof.2015.10.008

[2] Areti Ampatzoglou, Apostolos Ampatzoglou, Alexander Chatzigeorgiou, Paris
Avgeriou, Pekka Abrahamsson, Antonio Martini, Uwe Zdun, and Kari Systa.
2016. The Perception of Technical Debt in the Embedded Systems Domain: An
Industrial Case Study. In 8th IEEE International Workshop on Managing Technical
Debt (MTD). 9-16. https://doi.org/10.1109/MTD.2016.8

[3] Johannes Brauer. 2017. Measuring and Assessing Object-oriented Design Principles.
Dissertation. Johannes Kepler University, Linz, Austria.

[4] Johannes Briuer, Reinhold Plgsch, Matthias Saft, and Christian Korner. 2017. A
Survey on the Importance of Object-oriented Design Best Practices. In Proceedings
of the Euromicro Conference on Software Engineering and Advanced Applications
(SEAA) 2017. Vienna, Austria, 27-34. https://doi.org/10.1109/SEAA.2017.14

[5] Johannes Briuer, Reinhold Plésch, Matthias Saft, and Christian Kérner. 2018.
Measuring Object-Oriented Design Principles: The Results of Focus Group-Based
Research. Journal of Systems and Software (2018). https://doi.org/10.1016/j.jss.
2018.03.002

[6] Johannes Briauer, Matthias Saft, Reinhold Plésch, and Christian Kérner. 2017.

Improving Object-oriented Design Quality: A Portfolio- and Measurement-

based Approach. In Proceedings of the 27th International Workshop on Software

Measurement and 12th International Conference on Software Process and Prod-

uct Measurement (IWSM Mensura '17). ACM, New York, NY, USA, 244-254.

https://doi.org/10.1145/3143434.3143454

Peter Coad and Edward Yourdon. 1991. Object-Oriented Design. Prentice Hall,

London, UK.

[8] Ward Cunningham. 1992. The WyCash Portfolio Management System. In Ad-

dendum to the Proceedings on Object-oriented Programming Systems, Languages,

and Applications (Addendum) (OOPSLA °92). ACM, New York, NY, USA, 29-30.

https://doi.org/10.1145/157709.157715

Bill Curtis, Jay Sappidi, and Alexandra Szynkarski. 2012. Estimating the Size, Cost,

and Types of Technical Debt. In Proceedings of the Third International Workshop

on Managing Technical Debt (MTD ’12). IEEE Press, Piscataway, NJ, USA, 49-53.

Francesca Arcelli Fontana, Vincenzo Ferme, and Stefano Spinelli. 2012. Investi-

gating the impact of code smells debt on quality code evaluation. In Proceedings

of the Third International Workshop on Managing Technical Debt. IEEE, 15-22.

https://doi.org/10.1109/MTD.2012.6225993

Object Management Group. 2017. About the Automated Technical Debt Measure

Specification Version 1.0 beta 2. (2017). http://www.omg.org/spec/ATDM/

[12] Yuepu Guo and Carolyn Seaman. 2011. A Portfolio Approach to Technical Debt
Management. In Proceedings of the 2nd Workshop on Managing Technical Debt
(MTD ’11). ACM, New York, NY, USA, 31-34. https://doi.org/10.1145/1985362.
1985370

=

[9

=

[10

[11

R. Plosch et al.

[13] Jeanette Heidenberg and Ivan Porres. 2010. Metrics Functions for Kanban Guards.
In 17th IEEE International Conference and Workshops on Engineering of Computer
Based Systems. 306-310. https://doi.org/10.1109/ECBS.2010.43

Clemente Izurieta, Isaac Griffith, Derek Reimanis, and Rachael Luhr. 2013. On the

Uncertainty of Technical Debt Measurements. In Proceedings of the International

Conference on Information Science and Applications (ICISA). 1-4. https://doi.org/

10.1109/ICISA.2013.6579461

[15] Jean-Louis Letouzey. 2012. The SQALE method for evaluating Technical Debt.
In Proceedings of the Third International Workshop on Managing Technical Debt.
31-36. https://doi.org/10.1109/MTD.2012.6225997

[16] Jean-Louis Letouzey and Michel Ilkiewicz. 2012. Managing Technical Debt with

the SQALE Method. IEEE Software 29, 6 (2012), 44-51. https://doi.org/10.1109/

MS.2012.129

Zengyang Li, Paris Avgeriou, and Peng Liang. 2015. A systematic mapping study

on technical debt and its management. Journal of Systems and Software 101,

Supplement C (2015), 193-220. https://doi.org/10.1016/j.jss.2014.12.027

[18] Radu Marinescu. 2004. Detection strategies: metrics-based rules for detecting
design flaws. In 20th IEEE International Conference on Software Maintenance. IEEE,
350-359. https://doi.org/10.1109/ICSM.2004.1357820

[19] Radu Marinescu. 2012. Assessing technical debt by identifying design flaws in
software systems. IBM Journal of Research and Development 56, 5 (2012), 9:1-9:13.
https://doi.org/10.1147/JRD.2012.2204512

[20] Alois Mayr, Reinhold Plésch, and Christian Kérner. 2014. A Benchmarking-Based

Model for Technical Debt Calculation. In Proceedings of the 14th International

Conference on Quality Software (QSIC 2014). IEEE, Dallas, Texas, 305-314. https:

//doi.org/10.1109/QSIC.2014.35

Ariadi Nugroho, Joost Visser, and Tobias Kuipers. 2011. An Empirical Model of

Technical Debt and Interest. In Proceedings of the 2nd Workshop on Managing

Technical Debt (MTD °11). ACM, New York, NY, USA, 1-8. https://doi.org/10.

1145/1985362.1985364

Reinhold Plésch, Johannes Briuer, Christian Korner, and Matthias Saft. 2016.

Measuring, Assessing and Improving Software Quality based on Object-Oriented

Design Principles. Open Computer Science 6, 1 (2016). https://doi.org/10.1515/

comp-2016-0016

[23] Reinhold Plésch, Johannes Brauer, Christian Korner, and Matthias Saft. 2016.
MUSE - Framework for Measuring Object-Oriented Design. Journal of Object
Technology 15, 4 (2016), 2:1-29. https://doi.org/10.5381/jot.2016.15.4.a2

[24] Arthur J. Riel. 1996. Object-Oriented Design Heuristics (1st ed.). Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA.

[25] J. Sappidi, Bill Curtis, and Alexandra Szynkarski. 2011. The CRASH Report -
2011/12 Summary of Key Findings. Technical Report.

[26] Carolyn Seaman and Yuepu Guo. 2011. Measuring and Monitoring Technical
Debt. Advances in Computers, Vol. 82. Elsevier, 25 — 46. https://doi.org/10.1016/
B978-0-12-385512-1.00002-5

[27] Richard Mark Soley and Bill Curtis. 2013. The Consortium for IT Software Quality

(CISQ). In Software Quality. Increasing Value in Software and Systems Development,

Dietmar Winkler, Stefan Biffl, and Johannes Bergsmann (Eds.). Number 133 in

Lecture Notes in Business Information Processing. Springer Berlin Heidelberg,

3-9.

Jesse Yli-Huumo, Andrey Maglyas, and Kari Smolander. 2016. How do software

development teams manage technical debt? - An empirical study. Journal of

Systems and Software 120, Supplement C (2016), 195-218. https://doi.org/10.

1016/j.j55.2016.05.018

[29] Nico Zazworka, Carolyn Seaman, and Forrest Shull. 2011. Prioritizing Design
Debt Investment Opportunities. In Proceedings of the 2nd Workshop on Managing
Technical Debt (MTD ’11). ACM, New York, NY, USA, 39-42. https://doi.org/10.
1145/1985362.1985372

[30] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman. 2011.
Investigating the Impact of Design Debt on Software Quality. In Proceedings of
the 2nd Workshop on Managing Technical Debt (MTD ’11). ACM, New York, NY,
USA, 17-23. https://doi.org/10.1145/1985362.1985366

[31] Nico Zazworka, Rodrigo O. Spinola, Antonio Vetro’, Forrest Shull, and Car-
olyn Seaman. 2013. A Case Study on Effectively Identifying Technical Debt.
In Proceedings of the 17th International Conference on Evaluation and Assess-
ment in Software Engineering (EASE ’13). ACM, New York, NY, USA, 42-47.
https://doi.org/10.1145/2460999.2461005

[32] Nico Zazworka, Antonio Vetro’, Clemente Izurieta, Sunny Wong, Yuanfang

Cai, Carolyn Seaman, and Forrest Shull. 2014. Comparing four approaches

for technical debt identification. Software Quality Journal 22, 3 (2014), 403-426.

https://doi.org/10.1007/s11219-013-9200-8

Olaf Zimmermann. 2017. Microservices tenets. Computer Science - Research and

Development 32, 3-4 (2017), 301-310. https://doi.org/10.1007/s00450-016-0337-0

[14

(17

)
=

~
£,

™
&,

w
&

https://doi.org/10.1016/j.infsof.2015.10.008
https://doi.org/10.1109/MTD.2016.8
https://doi.org/10.1109/SEAA.2017.14
https://doi.org/10.1016/j.jss.2018.03.002
https://doi.org/10.1016/j.jss.2018.03.002
https://doi.org/10.1145/3143434.3143454
https://doi.org/10.1145/157709.157715
https://doi.org/10.1109/MTD.2012.6225993
http://www.omg.org/spec/ATDM/
https://doi.org/10.1145/1985362.1985370
https://doi.org/10.1145/1985362.1985370
https://doi.org/10.1109/ECBS.2010.43
https://doi.org/10.1109/ICISA.2013.6579461
https://doi.org/10.1109/ICISA.2013.6579461
https://doi.org/10.1109/MTD.2012.6225997
https://doi.org/10.1109/MS.2012.129
https://doi.org/10.1109/MS.2012.129
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1109/ICSM.2004.1357820
https://doi.org/10.1147/JRD.2012.2204512
https://doi.org/10.1109/QSIC.2014.35
https://doi.org/10.1109/QSIC.2014.35
https://doi.org/10.1145/1985362.1985364
https://doi.org/10.1145/1985362.1985364
https://doi.org/10.1515/comp-2016-0016
https://doi.org/10.1515/comp-2016-0016
https://doi.org/10.5381/jot.2016.15.4.a2
https://doi.org/10.1016/B978-0-12-385512-1.00002-5
https://doi.org/10.1016/B978-0-12-385512-1.00002-5
https://doi.org/10.1016/j.jss.2016.05.018
https://doi.org/10.1016/j.jss.2016.05.018
https://doi.org/10.1145/1985362.1985372
https://doi.org/10.1145/1985362.1985372
https://doi.org/10.1145/1985362.1985366
https://doi.org/10.1145/2460999.2461005
https://doi.org/10.1007/s11219-013-9200-8
https://doi.org/10.1007/s00450-016-0337-0

