10

15

20

25

Preprint - Original Version

S016412121830044X

see www.sciencedirect.com/science/article/pii/

Measuring Object-Oriented Design Principles: The Results of Focus Group-Based
Research

Johannes Briuer?, Reinhold Plosch?, Matthias Saft, Christian Korner?

@ Johannes Kepler University, Department of Business Informatics - Software Engineering, Altenbergerstrafie 69, 4040 Linz, Austria
bSiemens AG, Corporate Technology, Otto-Hahn-Ring 6, 81739 Munich, Germany

Abstract

Object-oriented design principles are fundamental concepts that carry important design knowledge and foster the de-
velopment of software-intensive systems with a focus on good design quality. They emerged after the first steps in
the field of object-oriented programming and the recognition of best practices in using this programming paradigm to
build maintainable software. Although design principles are known by software developers, it is difficult to apply them
in practice without concrete rules to follow. We recognized this gap and systematically derived design best practices
for a number of design principles and provide tool support for automatic measurement of these practices. The aim of
this paper is to examine the relationship between design best practices and 10 selected design principles. This should
provide evidence whether the key design aspects of the design principles are covered. We conducted focus group research
with six focus groups and 31 participants in total. In parallel, each group discussed five design principles and assessed
the coverage by using the Delphi method. Despite suggestions of additional design practices that were added by the
participants, the result reveals the impact of each design best practice to the design principle and shows that the main
design aspects of the design principles are covered by our approach and is therefore feasible to derive concrete design

improvement actions.

Keywords:

design best practices, design rules, design principles, software design quality, design improvement

1. Introduction

How does a good software design stand out from oth-
ers? One answer could be that it must be obvious that
someone has taken care of it (c.f., Feathers in (Martin,
2008)). The object-oriented programming paradigm and
the accompanying languages have placed much responsi-
bility on software developers regarding the design of a soft-
ware system. For example, the ways of slicing abstractions,
using encapsulation, and providing appropriate interfaces
mainly depend on the professionality of the programmer
and designer. Consequently, each software developer takes
responsibly for designing a software solution whose design
is simple and orderly. In short, a software developer must
take care of the resulting software design.

Essential instruments for carrying out this task are de-
sign principles since they support a software developer in
developing a software system that takes full advantage of
the object-oriented programming paradigm. In this work,
we do not focus on general design principles like coupling
or cohesion, but we concentrate on more specific design
principles like the single responsibility principle or the
open-closed principle. In general, this kind of design prin-
ciples define guidelines to ensure design quality aspects
(e.g., maintainability, portability, or functional suitability)
and avoid the introduction of traps and pitfalls (Dooley,
2011). Martin| (2003]), for instance, broadly discusses a

Preprint submitted to Journal of Software and Systems

45

set of object-oriented design principles that are also used
to teach software design aspects and assess the quality of
software systems (Samarthyam et al.; [2013). An example
of this set of design principles is the single responsibil-
ity principle, which states that every abstraction should
have only one responsibility expressed by the reasons to
be changed. In other words, when a class has two rea-
sons to be changed and the changes are not related to
each other, it is likely that the class contains too much re-
sponsibility (Martin, [2003). Consequently, in such cases,
each responsibility should be separated into a single class.
Adherence to this guideline eases the maintainability and
readability of the source code and reduces the likelihood
of side effects. In general, it enhances the design of the
software.

To reveal the importance of various design principles
in practice, we surveyed 104 software engineers and archi-
tects (Plosch et al.l [2016a)). In this survey, we identified
that the above-mentioned single responsibility principle, as
well as the separation of concern principle and the infor-
mation hiding principle, are the top three principles known
by the participants of the survey. Although engineers and
architects are aware of these principles, they noted — and
we observed — that there are difficulties in following them
while developing or designing a software system. One of
the reasons is that the descriptions of design principles are
still too vague to be easily understood and correctly im-

January 15, 2018

reinhold
Schreibmaschinentext
Preprint - Original Version see www.sciencedirect.com/science/article/pii/S016412121830044X

reinhold
Schreibmaschinentext

reinhold
Schreibmaschinentext

reinhold
Schreibmaschinentext

reinhold
Schreibmaschinentext

reinhold
Schreibmaschinentext

reinhold
Schreibmaschinentext

reinhold
Schreibmaschinentext

reinhold
Schreibmaschinentext

reinhold
Schreibmaschinentext

55

60

65

70

75

80

85

90

95

100

105

plemented in the design. Based on this shortcoming, we
analyzed the design principles to systematically identify
related design best practices (aka design heuristics accord-iwo
ing to [Riel| (1996)). To determine the violations of these
practices directly in the source code, we built a measure-
ment tool as introduced in (Plosch et al., 2016b)). Finally,
we defined a Quamoco-based quality model that assigns
these practices to the principles in a formal way (Ploschis
et al.| 2016a)).

For the validation of this design quality model, we fol-
lowed a bottom-up strategy and started examining the
design best practices. Therefore, we conducted a broad
survey of 214 participants and derived findings regardingizo
the importance of different design best practices on design
quality in general (Brauer et all [2017b). In this survey,
design principles were ignored.

Based on the conducted surveys, we have gained evi-
dence on the importance of these design knowledge-carrying
concepts (design best practices and design principles) and
the findings met our expectations. However, the important .
and remaining question is whether the prosed design best
practices for a specific design principle cover the essential
aspects of the principle or just touch on some minor de-
sign aspects. To answer this general question, we derived
following research questions:

e RQ1: How important are design best practices con-
cerning their assigned design principle?

e RQ2: Are there additional design best practices for
operationalizing a design principle?

135
e RQ3: To what extent can the design knowledge of a
design principle be grasped by the associated design
best practices?

RQ1 focuses on the importance of a best practice in
relation to assigned principles. This should reveal those™
best practices that stronger impact a design principle com-
pared to others. In course of discussing this relationship,
it can be assumed that participants identify aspects that
are not addressed by our proposed set of practices. This is
why RQ2 explicitly addresses this point and collects those™
ideas that have been unconsidered by us. Finally, it is nec-
essary to understand to what extent the proposed design
best practices cover the design principles. By answering
RQ3 in terms of a completeness assessment for each prin-
ciple, we will gain evidence on whether our set of design150
best practices can claim to be able to measure design prin-
ciples and to provide the basis for deriving improvement
actions.

To reveal answers to the three research questions, we
conducted focus group research with 31 experts in soft-"
ware design. The focus group research approach was se-
lected since it provides a framework for in-depth discus-
sions, place for gathering new ideas, and techniques for
working on a research question in a collaborative manner.
Latter aspect means that participants of a focus group can'™”

0

2

learn from each other to get a more elaborated view on the
topic in particular on design principles. This helps to en-
hance the overall validity of the study due to a common
understanding of the principles — a circumstance which is
difficult to achieve by using, for instance, interviews or
surveys that are conducted individually.

The remainder of this paper is structured as follows.
The next section provides more details on design principles
and the research approach. Section [3| explains the design
of this investigation including the discussion process of a
focus group and a summary of the primary results at the
end. Section [4] draws a conclusion of the research process
and discusses the results. Finally, Section [5| highlights the
limitations of this investigation before it presents a con-
clusion and avenue for future work in the last section.

2. Related Work

This work examines the research area of measuring
object-oriented software design quality by verifying the ad-
herence to the design principles using design best practices.
To further examine this topic, the focus group research
method is selected. Thus, related work pertaining to the
research area and research method is discussed.

2.1. Design Principles

Approaches for measuring object-oriented software de-
sign have received much attention since Chidamber and
Kemerer proposed a well-known metrics suite that mea-
sures the properties of object-oriented design (Chidamber
& Kemerer}, 1994). Some approaches have adapted and
extended this suite to understand the characteristics of
particular object-oriented design aspects (Subramanyam
& Krishnan) [2003; [Srivastava & Kumar) [2013]), or investi-
gated specific aspects of more general design principles re-
lated to cohesion, coupling, and inheritance (Briand et al.|
1999, 2001)). In addition to measuring, decisions for refac-
toring can be identified and design improvements can be
driven. However, it has been recognized that using single
metrics and considering them in isolation does not provide
enough insight for proposing sound design improvements
(Marinescu, [2004)).

Our work focuses on understanding the application of
design principles in software design. In this regard, we do
not consider design principles at the coarse-grained level
of low coupling, high cohesion, moderate complexity, and
proper encapsulation, as proposed by |Coad & Yourdon
(1991)) or described by Meyer| (1997)), but rather on a finer
level and with principles addressing a particular design
issue, like the single responsibility principle or the open-
closed principle.

It has been discussed that these so-called fine-grained
design principles are more accurate and provide useful
cuidance for building high-quality software design (Doo-
ley, 2011} [Sharma et al. |2015). Further, they are used
to organize and arrange the structural components of the

165

170

175

180

185

190

195

200

205

210

215

(object-oriented) software design, build up a common con-
sensus about design knowledge, and support beginners in
avoiding traps and pitfalls. Although fine-grained designazo
principles break down design aspects, however, they are
still too abstract to be directly measured.

Except for one work that touches on the operationaliza-
tion of design principles, we are not aware of any broader
investigation in this regard. The work that addresses this
research topic to some extent concentrates on design prin-,
ciples related to good interface design (Abdeen et al.,|2013)).
In more detail, the team analyzes the design of interfaces
to evaluate the adherence of interfaces to the interface seg-
regation principle and the program to an interface, not an
implementation principle. Therefore, they assign cohesion,,,
metrics to the principles and measure these metrics on a
set of open-source projects. The results of this research
show that software developers follow this narrow set of
principles (Abdeen et al., [2013), but the work does not
provide any guidance on how to improve a design that,
does not follow the measured principles.

Other work on measuring and assessing design princi-
ples is shown by [Samarthyam et al.| (2013). They manu-
ally assess the design of real-world projects by relying on
the expertise of design experts. During these assessments,,,
they observe that the cause of poor design quality is the
violation of design principles. However, the community is
missing an analysis framework that maps design issues to
the violations of design principles as highlighted by the
authors (Samarthyam et al., [2013} |Sharma et al., 2015).

Our previous work already addressed this gap and pro-
posed a model that assigns design best practices to de-
sign principles (Plosch et al., [2016al). We consider design
best practices to be measurable design properties that can
be operationalized by a static code analysis tool (Plosch
et al., [2016b). The value of using design best practices,
aka design heuristics (Riel, [1996), to link abstract de-
sign principles to quantitative software properties is un-"
derlined by [Churcher et al.| (2007)). While this group has a
strong focus on visualizing the violations of design heuris-
tics, they argue that this measuring technique is a valuable
tool to identify design issues and evaluate design quality
(Churcher et al., [2007]).

To summarize, there are a large number of approaches
and studies available that propose approaches to measure
more general design principles like abstraction, coupling,
cohesion, or inheritance by means of metrics of design
smells. However, there is little work available to opera—260
tionalize more specific design principles like the single re-
sponsibility principle or the open closed principle. Those
approaches available, concentrate on either metric-based
or smell-based approaches for measurement, while our ap-
proach relies on design best practices that provide specific
hints how to improve the design of the source code. In our?*
previous work (Brauer et al., |2017b)), we showed the im-
portance of our design best practices in general and with-
out considering the aspect of measuring design principles.
The focus of this work is to find out about the importance

245

255

of our design best practices in the context of the design
principles and to get insights to which extent the design
principles can be measured by our design best practices.

2.2. Focus Group Research

To address the above mentioned research questions, we
choose the focus group research approach. Focus groups
are carefully planned discussions with the flexibility to ob-
tain the personal perceptions of the participants in a de-
fined research area (Kontio et al., |2008|). We apply this
research approach since the research question focuses on
a defined research area and focus group members can ex-
press their opinions, resulting in insightful information.
The flexibility to capture the individual opinions of partic-
ipants is required because the discussion of software design
quality is a complex matter and context-dependent.

Although there is no related investigation of design
principles by using focus group discussions, focus group
research is an accepted empirical research approach within
the software engineering research community (Kontio et al.|
2008]). One of its strengths is the discovery of new insights
due to the interactive nature of the setting and different
backgrounds of the participants (Kontio et al., [2008). This
supports researchers in getting new ideas that might not
have been considered beforehand. Further, focus groups
are well suited to obtain feedback on how models or con-
cepts are presented (Edmunds| |2000). For instance, this
approach has been successfully used to validate a pro-
cess framework for embedded systems engineering (Char-
alampidou et al.| 2014).

3. Focus Group Research Design

To answer the research questions mentioned in the In-
troduction, participants need to understand the concept
and characteristics of each design principle. Further, they
may have questions about some aspects that need to be
clarified; otherwise, design principles could be wrongly in-
terpreted. With a solid understanding of the design prin-
ciple, it is possible to judge whether design best practices
are related to a design principle. According to these cir-
cumstances, we decided to conduct focus group research.

While the dynamics of the focus group and relatively
small sample size may bias the results of the investigation
(Kontio et al.l 2008]), some of our decisions regarding the
research method try to reduce these risks explicitly. The
entire design of the research method and its combination
with Delphi as a data collection method is aligned with
the guidance given by Kontio et al. (2008).

3.1. Research Planning

The focus group method is suitable for gathering feed-
back on new concepts or models as well as for generat-
ing ideas (Kontio et al.; |2008). We decided to use this
approach to discuss a defined set of design principles in

270

275

280

285

290

295

300

305

310

315

320

software engineering. The selection of this set of princi-
ples is based on their practical relevance. Thus, we con-
ducted a survey beforehand to find out the ten most im-
portant design principles from an original set of 31 identi-
fied object-oriented design principles (Plosch et al.. |2016a)).
Consequently, the subjects of the investigation in this work®
are the single responsibility principle (SRP), information
hiding (IHI), don’t repeat yourself principle (DRY), open

closed principle (OCP), acyclic dependency principle (ADP),

interface segregation (ISP), favor composition over inheri-
tance principle (FCOI), command query separation princi-
ple (CQS), common closure principle (CCP), and program’
to an interface not an implementation (PINI). Below, the
definition of each principle is provided as used throughout
the focus group research.

e Single Responsibility Principle: If a class hag
two reasons to be changed and the changes are not
related to each other, the functionality of the class
has to be split into two separate classes (Martin,
2003]). When following this principle, each class will
handle only one responsibility and extensions will be3+
individually addressed in each class.

e Information Hiding Principle: A class is not al-
lowed to expose design decisions that are character-
izing its implementation. a5

e Don’t Repeat Yourself: “Every piece of knowl-
edge must have a single, unambiguous and authorita-
tive representation within a software system” (Hunt
& Thomas 1999, p. 27), that is to say, neither dupli-
cated data structures or source code nor meaningless™
source code documentation.

e Open Closed Principle: Source code should be
written and the design should be implemented in a
way that allows adding new functionality with min-sss
imum changes in the existing source code.

e Acyclic Dependency Principle: The dependency
structure between packages must be a directed acyclic
graph meaning that there must not be cycles in the
dependency structure on package level (Martin, 2003]).

e Interface Segregation Principle: “Classes should
not be forced to depend on methods [of an interface]
that they do not use” (Martin, 2003, p. 137). In-
stead of one fat interface, a set of small interfaces is*®
preferred whereas each interface serves a particular
group of classes.

e Favor Composition over Inheritance: Object
composition instead of class inheritance should be
used to reuse functionality. 370

e Command Query Separation: A method should
either modify an object (command) or return data
of an object (query). These two concepts should not
be mixed.

e Common Closure Principle: Classes within a
package should be closed together against the same
kind of changes. A change affecting a package there-
fore affects all classes in that package (Martin,|1996)).

e Program to an Interface, not an Implementa-
tion: Interfaces or abstract classes should be used
instead of concrete classes.

To each of these design principles, we assigned at least
one design best practice (aka design rule) from the list of
practices in the[Appendix A] In most cases, multiple design
best practices are linked to a design principle depending
on the facet richness of addressed design aspects. Besides,
some principles share similar design intentions resulting in
multiple assignments of practices. Before conducting this
investigation, we systematically evaluated each design best
practices to understand their importance for good object-
oriented design, using a survey-based approach (Brauer
et al., [2017b). As a result, we became aware of the im-
portance levels of the design best practices; something we
expected. Although we obtained a good understanding of
the importance of design best practices for object-oriented
design by using this survey, the relation between design
best practices and design principles is still poorly under-
stood - a gap this work tries to bridge.

For the sake of clarification, the validation of these de-
sign best practices does not only rest upon their name and
description because we also developed a measurement tool
called MUSE that identifies the non-conformance of these
practices (Plosch et al.,[2016b). Thus, the tool implements
the logic of the design best practices and quantifies viola-
tions in source code written in Java, C#, or C++. In pre-
vious work, MUSE was applied in the context of different
research activities and in real-world projects of industrial
partners (Plosch et al.| [2016alb).

Verbally conducting a focus group discussion may be
dominated by opinion leaders or the group behavior (Kon-
tio et al.,2008). This is the reason why we defined the first
requirement to conduct anonymous discussions in which
team members are demanded to contribute anonymously.
Further, design principles are complex and difficult to grasp
in a short session. Accordingly, we defined as the second
requirement that there must be a way for the participants
to study design principles independently. Finally, there
was the constraint that the participants could not meet
in person because traveling costs could not be refunded.
Thus, the third requirement focused on conducting the dis-
cussions remotely. To address all of these needs, we con-
cluded to design and conduct virtual (online) focus groups
as defined and suggested in (Turney & Pocknee, [2005)).

3.2. Focus Group Design

Throughout designing the focus groups and considering
the necessary effort, it was not possible to discuss all ten
design principles in each group. Consequently, the design
principles were divided into two sets based on pre-defined

375

380

385

390

395

400

405

410

415

420

425

requirements. First, we tried to keep the number of as-o
signed design best practices and therefore the effort for
judging them balanced between the focus groups. For in-
stance, IHI and OCP that both have many assigned prac-
tices were kept separated. Second, each set had to contain
one of the two package-related design principles that areas
ADP or CCP. Third, we separated FCOI and PINI since
these two design principles address abstraction issues. Fi-
nally, we derived the first set containing SRP, THI, FCOI,
CQS, and CCP; and the second set comprising OCP, DRY,
ADP, ISP, and PINI.

A typical focus group research approach consists of four#o
to six focus groups with a sample size of four to eight par-
ticipants (Kontio et al., |2008)). Because smaller groups
generate high levels of participant involvement (Kontio
et al., 2008), we decided to form groups of five partici-
pants. Furthermore, we aimed at having at least threes
groups discussing one set of design principles, resulting in
15 opinions for each design principle. Consequently, it was
necessary to acquire at least 30 participants for the six fo-
cus groups.

3.2.1. Selection of Participants 0

Before recruiting participants, we defined the mini-
mum software engineering skills needed. Thus, partic-
ipants must have good to top experience in any of the
three object-oriented programming languages: Java, C#,
or C++. This requirement reduces the risk that partici-,
pants are not able to grasp the intention of a design prin-
ciple including their practical relevance and impact on de-
sign quality. For the evaluation of this experience, the
participants had to provide a self-appraisal on a five-level
scale where the two highest values were good and top.

We acquired participants for our study in three ways.
First, we invited people who completed our previous sur-
vey about the importance of design best practices. In this
survey, participants subscribed to receive a summary of
the survey, and in distributing this document, we invited,
them to participate in a focus group. Although this ac-
quisition represents a threat to validity to the advance
in knowledge of re-participating members, we controlled
this threat by providing the same (or even more) informa-
tion of design best practices to all focus group members.
Second, we asked local companies with a strong focus on#»°
software development to promote the participation as a
means for enhancing object-oriented design skills of their
software developers. Lastly, an industrial research partner
incorporated the focus group discussions as part of a senior
developer training. In this training, the design principles
play a central role, meaning that these participants are*s
perfect candidates for our focus group research.

3.2.2. Segmentation of Participants

The segmentation of focus groups addresses the proper
composition of the groups and offers two basic advantagesas,
according to Morgan| (1997): (1) the segmentation allows
building comparable dimensions into the entire research

project and (2) it facilitates the discussions by making
group members more similar to each other.

Considering these two advantages, we composed the
six focus groups depending on different constraints. For
instance, some participants were limited in their availabil-
ity; hence, we assigned them to an earlier or later group
discussion. Furthermore, we consolidated the participants
recruited from the same company to support the homo-
geneity of the teams. Briefly summarized, the main char-
acteristics of the groups are shown below:

e FG-I: A group of members working in software engi-
neering research departments with a strong academic
background. These participants have completed our
previous survey. Thus, we can assure that all partic-
ipants fulfill our requirements regarding their soft-
ware engineering qualifications.

e FG-II: This group contains volunteers recruited via
LinkedIn and ResearchGate discussion groups. A
background check and their contribution to our pre-
vious survey proved their software engineering com-
petencies. However, the group members work in dif-
ferent application domains.

e FG-III to V: Our industrial research partner con-
stituted three focus groups. More specifically, these
participants are senior software developers enrolled
in an in-house key developer training offered by the
research partner. Although we could not conduct a
background check of the engineering skills as con-
ducted for other participants, our research partner
confirmed that the skills are at — and in most cases
above — the required level. Further, the training pro-
gram focuses on teaching design principles and es-
tablishing awareness in following them. Therefore,
trainees must complete assignments such as princi-
ple hunting in their source code as well as principle-
based improvement activities. Overall, these trainees
are perfect candidates for this research as they have
a thorough understanding of design principles and
their violations and have — due to their seniority level
— perfect software engineering knowledge.

e FG-VI: A local industry partner set up a focus group.
These members are working in industrial automa-
tion and are senior developers with good experience
in building embedded systems using object-oriented
technologies for more than five years.

8.8. Focus Group Discussion

Since we decided to constitute online focus group dis-
cussions, appropriate tool and data collection methods
were required. From the tool perspective, it is recom-
mended to rely on university learning management sys-
tems (Turney & Pocknee, |2005). This results in the benefit
that the research process takes advantage of the quality,

485

490

495

500

505

510

515

520

525

530

535

security, and privacy regulations defined by the univer-
sity (Turney & Pocknee 2005). Further, the participant’s
anonymity and confidentially can be ensured (Turney &
Pocknee, 2005)). For this research, the Moodleﬂ service,
which is hosted by the JKU, was used. We have alreadys
applied this service to manage coursework and student
teams, so no training was needed.

To collect the data from the group discussion, we se-
lected the Delphi method. In the literature, the Delphi
method is suggested for this purpose because it struc-
tures the discussion process and supports its documenta-ss
tion (Adler & Ziglio, |1996). [Linstone & Turoff] (1975) pro-
vide a more general definition of the Delphi method and
state that it structures a group communication process so
that the process is effective in allowing participants to deal
with a complex problem. Therefore, the implementationss,
of the process must provide feedback on individual contri-
butions, an assessment of the group judgment or view, the
opportunity for individuals to revise views and judgments,
and some degree of anonymity (Linstone & Turoff, |1975]).

Although we could have conducted a traditional sur-sss
vey or interviews during the focus group discussions, we
decided to apply the Delphi method. The main benefit of
this method is that participants can express their opinion
in a first round that can be revised after considering the
opinion of the other participants of the focus group. Gen-s
erally, this is a stronger approach for interrogating partici-
pants and helps participants to rethink their first opinion,
which may be dominated by their software development
duties and the environment they are working. Another key
advantage of the method is that it avoids the confronta-
tion of experts (Okoli & Pawlowskil [2004), supporting our,,
first requirement of conducting an anonymous discussion.
Lastly, Delphi does not require participants to meet in per-
son (Okoli & Pawlowski, 2004). This perfectly aligns with
our third requirement and does not limit the research to
local experts. 570

Before starting the discussion process, we assigned one
of the two sets of design principles to each focus group.
More specifically, the focus groups FG-I, FG-III, and FG-
V analyzed the design principles SRP, ITHI, FCOI, CQS,
and CCP, while the focus groups FG-II, FG-IV, and FG-,,
VI analyzed the design principles DRY, OCP, ADP, ISP,
and PINI. Accordingly, at least 15 experts worked on each
design principle.

Based on the process proposed by [Okoli & Pawlowski
(2004), we divided the discussion of our focus groups intog,
three phases. An overview of these three phases is shown
in Figure [I] highlighting the main activities and artifacts.
The first phase was called the brainstorming phase and
introduced the topic and design principles to the partic-
ipants. After this step, the clarification phase followed.
This focused on identifying white-spots and clarifying the
importance of design best practices in the context of a

Thttps://moodle.org/.

given design principle. Due to the result of the ongoing
group discussion, the last phase, the completeness assess-
ment phase, asked the participants to estimate the cover-
age of a design principle by its assigned design best prac-
tices. In the following subsections, we discuss these three
phases in more detail.

3.3.1. Brainstorming Phase

In the brainstorming phase, a description of each de-
sign principle was provided. These descriptions were struc-
tured in the same way and included a definition, addressed
design problem, technical details, affected quality aspects,
and original definition of the principle. This information
was presented by using so-called lessons using our Moodle
system. Moreover, it was possible to download a design
principle sheet containing the same information for each
principle.

The goal of this phase was to build an understanding
of the five design principles in each group. Therefore, the
participants had to study the provided material and they
were assigned to post their opinion, a question, or remark
in an open group forum to foster interaction between them
and critically reflect on the provided information. This is
also the reason why this phase is called the brainstorming
phase because brainstorming is a group creativity tech-
nique by which efforts are made to gather a list of ideas
spontaneously contributed by the participants.

3.3.2. Clarification Phase

Based on a solid understanding of the design principles,
the clarification phase introduced a set of design best prac-
tices. These design best practices play an important role
because they are used to measure design principles (Plosch
et al.l [2016a). However, there is no clear understanding of
the importance of various design best practices and their
positive or negative impact on principles. Consequently,
this phase clarifies the relationship between design princi-
ples and the associated design best practices.

To address this uncertainty, the Delphi method was ap-
plied in two rounds. In the first round, a questionnaire con-
taining the five design principles including their assigned
design best practices was distributed. This questionnaire
asked the participants to assess the importance of the de-
sign best practice in relation to the associated design prin-
ciple. Accordingly, it was important to look at the design
best practices from the perspective of the design principle.
This concern was explicitly communicated to the partici-
pants. The assessment was conducted on a five-point scale
from wvery high (5) to very low (1) including the not rele-
vant (0) option. Additionally, the questionnaire asked the
participants to list further design best practices that they
consider to be relevant for measuring the design principle.

We collected the suggestions returned by the first round
and removed duplicates. Further, it was necessary to align
the suggestions to our naming conventions and descrip-
tion format. At this point, they were just suggested, but

590

595

600

Design principle
description

Self-study of design
principle descriptions

design principles in
discussion forum

Knowledge exchange about

Design principle
incl. related design

best practices

Assessment of relationship
between design best practice
and design principle

v

Identification of missing
design practices related to
design principles

v

Suggestions for
addtional design
practcies

Assessment of relationship
between suggested design
practice and design principle

v

Interim assessment
result

Review of group opinion and
adjustment of own opinion

v

Final result

Design principle
incl. related design
best practices

Assessement of completeness

A

Interim completeness
result

Review of group opinion and
adjustment of own opinion

A

Final result

Brainstorming Phase

Clarification Phase

Completeness Assessment
Phase

an assessment of the importance was still missing. Conse-
quently, the new design best practices needed to go through
the same assessment round as the proposed ones. With
this additional step and the second questionnaire, the ex-
perts were asked (a) to verify that we had correctly inter-cos
preted their response and (b) to assess the importance of
the suggestions. According to |Schmidt| (1997, “without
this step, there is no basis to claim that a valid, consoli-

dated list has been produced.”

After this intermediate step, all design best practiceseo

Figure 1: Workflow of focus group discussion

were individually assessed by the participants. These re-

sponses were then consolidated into an interim result re-
quired for the second round.
phi method specifies that the participants can revise their
opinion based on the group opinion. This is why all par-
ticipants received their questionnaire from the first round
and the interim result. Then, they were asked to rework
through the questionnaire and adjust their first impor-
tance assessment when they changed their perception. Fi-
nally, the revised and returned questionnaire represented
the result of the clarification phase.

In more detail, the Del-

615

620

625

630

635

640

Design Principle
Proposed Design Best Practices:
645
-DBP A (veryimportant) @
—> 60 Points
- DBP B (important) (0]
- DBP C (important) (0]
650
Suggested Design Best Practices: -
- DBPY (slightly important) @
. 655
- DBP Z (important) ® > 30 Points
Unmentioned Aspects: (] | .
—» 10 Points

Figure 2: Coverage of design principles by their assigned design best6°
practices

3.8.3. Completeness Assessment Phase

The third phase raised the complexity of the investi-
gation to its top level since it aimed to derive the com-
pleteness of the design principles by their assigned design
best practices. In more detail, a questionnaire asked the
participants about two estimates for each design principle:

5

e (1) The coverage (in points) of a design principle by
our proposed set of design best practices, and o

e (2) The coverage (in points) of a design principle
by the design best practices suggested by the focus
group.

675

For this task, the participants had to consider the de-

rived importance of the design best practices as an indica-
tor. To better explain this assignment, see the example in
Figure [2| This example assumes that a design principle is
characterized by three design best practices from us andsso
by two design best practices suggested by the study par-
ticipants. Then, the participants had to assess to which
degree the principle is covered by the proposed set and how
much by the suggested set. Adding these two values does
not necessarily need to sum to 100 points when there aresss
still unmentioned aspects. Based on the example in Fig-
ure 2] the participant assumes that DBP A, DBP B, and
DBP C contribute 60/100 points to the principle, DBP Y
and DBP Z (the two design best practices proposed by the
study participants) get 30/100 points, and there are stillso
unmentioned aspects, assessed by 10/100 points.

In the above example, the idea of unmentioned aspects

needs some clarification. While designing this research and
discussing its goal, it was identified that design principles

are sometimes multifaceted, making it difficult for them to
be fully covered by an enumerable set of design best prac-
tices. For instance, OCP states that software entities such
as classes, modules, and functions should be open for ex-
tension, but closed for modification (Martin} 2003). Since
this principle addresses most software entities, it is im-
possible to define all the characteristics that make up the
principle. To address this circumstance and avoid a too
rigid assessment of completeness, we provided this evalua-
tion buffer, which is more or less based on the gut feeling
of the participants.

Following the Delphi approach, the assessment in this
phase was again conducted in two rounds where the par-
ticipants received the responses of the other participants
to revise their assessment. Finally, the adjusted question-
naires represented the result of the focus group.

4. Results

In the brainstorming phase, the participants studied
the provided material on the design principles and con-
tributed to a forum discussion. This discussion aimed to
build an understanding but without any intent to be fur-
ther analyzed. The main data collection happened in the
second and third phases.

4.1. Suggestions for additional design best practices

While the assessment of the importance of design best
practices on design principles in the second phase relied on
a defined scale, the open question asking about additional
design aspects was analyzed qualitatively. Thus, the notes
from the participants were examined by two independent
researchers to derive their design purpose and to identify
similarities to other practices. Without judging the ob-
jective of the suggestion, we transformed the notes into
a design rule description and a meaningful name. There-
fore, we aligned the suggested description to our pattern of
delineating design best practices and exchanged terms as
used in other descriptions. Further, the original note, de-
rived description, and name were verified by the proposer
to reveal misinterpretations. In total, 34 additional design
best practices were suggested from which two conceptually
overlapped with the practices from our pool.

It is important to understand that the focus groups
were working separately and that new ideas were not shared
among the other teams. Consequently, each discussion
contained just a subset of the 34 suggestions, as depicted in
Tables[TJand 2] The descriptions for each suggested design
best practices are listed in the Furthermore,
Table 2] shows that none of the members in FG-V provided
a suggestion for an additional design best practice. Nev-
ertheless, these two tables summarize the answer to RQ2,
which aims at identifying missing design best practices.

For these new ideas of design best practices, we did not
require that they can be automated with a static code-
measuring tool. The design best practice UseMeaning-
fulVariableNames, for instance, is related to the naming

695

700

705

Table 1: Suggested design practices for IHI, SRP, FCOI, CCP, and
CQsS

20

E (};?SE; Design Best Practice
UseIlmmutableObjects
FG-I DontExposelnternalStructureOfClass
E AvoidExposingImplementationDetailsInMethodN.
- FGIIT MakeClassesPublicIfNecessary
CheckInterrelatednessOfLayer
FG-V | AvoidReturningCollectionsArrays
PO AvoidDuplicationOfStateInformation
CheckMethodUsageDynamically
% FG-IIT AvoidUnbalancedInheritanceAndDelegationHier.
2 AvoidUnrelatedFields
FGV AvoidStaticMethods
AvoidNonCohesivelnterfaces
-y FG-I UseCoherentNaming
8 FGIIT AvoidSharedClassesInSubPackages
AvoidSimplyDependenciesAcrossMultiplePackages
N FG-I AvoidReturningContainerObjectsFromCommands
8 FGIIT AvoidMutableFieldsWhenPossible
AvoidPretendedObjectStates
—
8 FG-I AvoidLargeObjects
=

Table 2: Suggested design practices for DRY, ADP, OCP, and ISP

E gig;l; Design Best Practice
UseMeaningful VariableNames
FG-II | CheckPrivateMethodUsage
E CheckGroupingOfUtilityClasses
A FGVI AvoidSamelnformationInDifferent Artifacts
AvoidDeadCode
AvoidNonCohesivePackagelmplementations
a FG-1I UseStrictLayering
<QC KeeplnterfacelmplementationsTogether
FGVI AvoidReferencinglmplementationPackages
AvoidPropertylInjection
83 FG-1I CheckUnrelatedMethods
= | FG-VI | AvoidInterfacelnheritance
% FG-1I UselnterfaceForExternalPackageDependencies

conventions of variables and requires that a variable must
have a meaningful name. A static code analyzer could
verify the length and notation of the variable name, but
meaningfulness is hard to grasp without knowing the un-
derlying semantics. Thus, static code analysis is insuffi-
cient for implementing all the suggestions as an automated
rule.

4.2. Relative importance of the design best practices

At the end of phase two, the relative importance of all
design best practices to their assigned design principle had
been derived. For this assessment, the participants had to

30

35

provide the first opinion on a five-point scale and could
then revise their opinion in a second round. This provided
the opportunity to consider other opinions and critically
reflect on the first opinion if it significantly differed from
the group understanding. While the Delphi method de-
fines this reflection round, the participants changed their
first assessment in only a few cases.

The result of this phase is a list of 15 opinions about
the relative importance of each practice to a principle. We
aggregated all individual judgments to one representative
group opinion by first transferring the ordinal scale values
to their numerical representation and then calculating the
arithmetic mean. This mean was then mapped onto the
five-point scale - very high (5), high (4), moderate (3), low
(2), and very low (1) - since it is sufficient and easier to
communicate this value representation. We also offered
the answering option not relevant (0) that was not used
by any of the participants of the focus groups. For the
mapping we defined the range of each ordinal scale value
in between +/-0.5 points around the default value; for
instance, the arithmetic mean of 3.3 was mapped to mod-
erate (3). We did not calculate the arithmetic mean of the
suggested design best practices since they were not dis-
tributed among all groups and just discussed within each
group. Tables [3| and [4] show the design best practices and
their group opinion for all 10 design principles and sum-
marize the findings to answer RQ1.

Except for OCP, the research reveals that the other
nine principles have at least one design best practice, which
has high or very high importance. In other words, those
design best practices assessed as very high or high meet
the design aspect of the principle. This provides a first
justification that practices express certain parts of the as-
sociated design principles. However, to understand the

Table 3: Design best practices for IHI, SRP, FCOI, CCP, and CQS

E Design Best Practice Importance
AvoidPublicFields very high
DontReturnMutableCollectionsOrArrays very high
AvoidUncheckedParametersOfSetters high

= UselnterfacesAsReturnType high

~ | AvoidProtectedFields moderate
AvoidSettersForHeavilyUsedFields moderate
AvoidManySetters low
AvoidManyGetters very low

% AvoidNonCohesivelmplementations very high

»2 | CheckUnsuitableFunctionalityOfClasses high

5 CheckUnusedSupertypes very high

8 UseCompositionNotInheritance very high

a AvoidNonCohesivePackages very high

8 AvoidStronglyCoupledPackages very high
AbstractPkg.ShouldNotDependOnOtherPkg. | high

o | AvoidCommandsInQueryMethods very high

g DontReturnUninvolvedDataFromCommands very high
AvoidReturningDataFromCommand low

740

745

750

755

760

765

Table 4: Design best practices for DRY, ADP, OCP, ISP, and PINI
[a W}

a Design Best Practice Importance
AvoidDuplicates very high
DocumentInterfaces very high
DocumentPublicClasses high

E AvoidSimilarAbstractions moderate

A | DocumentPublicMethods moderate
AvoidSimilarNamesForSameDesignElements moderate
AvoidSimilarNamesForDifferentDesignElemen.| moderate
AvoidMassiveCommentsInCode low

é AvoidPackageCycles very high
AvoidUncheckedParametersOfSetters moderate
AvoidPublicStaticFields moderate
DontReturnMutableCollectionsOrArrays moderate

n, | UselnterfacesAsReturnType moderate

8 AvoidPublicFields moderate
AvoidRuntimeTypeldentification moderate
UseAbstractions low
AvoidSettersForHeavilyUsedFields very low
AvoidProtectedFields very low

% CheckUnsuitableFunctionality OfClasses high

Z | UselnterfacesIfPossible high

& | ProvidelnterfaceForClass high

power of the proposed and suggested practices, we asked
the participants about their estimation.

4.3. Completeness achieved by the design best practices

To understand the completeness of the design princi-
ples by their assigned design best practices, the partici-
pants had to divide a cardinal scale, which ranged from
0 to 100, into three parts, representing (1) the complete-
ness obtained by our proposed set of design best practices,
(2) the completeness obtained by the suggested set of de-
sign best practices, and (3) the unmentioned aspects of
the design principle not addressed by any of the practices.
Section as well as Figure 2] explain this task by means
of an example.

By applying the same approach as in phase two, the
participants had to provide the first opinion on complete-
ness. Since we were aware of the difficulty of this assign-
ment, we motivated the task as relying on the gut feel-
ing for this first estimation. After the group members re-
turned the assignment sheet, we summarized the opinions
into one interim group result. This result was individ-
ually distributed to the participants, who had to reflect
on the group opinion critically. If the view of a partici-
pant changed during this reflection process, he or she was
allowed to alter the initial assessment by changing the dis-
tribution of the three parts.

Lastly, we summarized all the revised assessments into
one final group opinion. Tables [5] and [6] depict the final
group opinion of all six focus groups separated by the two

770

775

780

10

sets of design principles. The first row (1) in each design
principle shows the completeness achieved by our proposed
set of design best practices, the second row (2) the addi-
tional completeness achieved by the suggested set of design
best practices, and the third row (3) represents the unmen-
tioned aspects of the design principle. If a focus group did
not provide any suggestion for a particular principle, the
assessment of this part could not be conducted, resulting
in an empty cell in the second row.

According to Table[f] the design principle CQS achieves
the highest completeness assessment with 92.0 points by
FG-V. In contrast, FG-III judges the design principle CCP
with the lowest completeness value of 52.0 points in rela-

Table 5: Completeness assessment of IHI, SRP, FCOI, CCP, and
CQS

DP FG-I FG-III FG-V
(1) || 70.0 | 10.0 || 56.0 | 16.2 || 74.0 | 7.4
THI (2) || 26.3 | 9.6 11.0 | 2.0 12.0 | 4.0
3)1|| 3.7 4.1 33.0| 154 || 14.0 | 3.7
(1) || 65.0 | 16.6 || 56.0 | 23.3 || 54.0 | 4.9
SRP [(2)[[175 | 83 |[15.0 | 45 || 32.0 | 4.0
(3)|| 17.5 | 14.8 || 29.0 | 22.0 || 14.0 | 4.9
(1) || 87.5 | 10.3 || 73.0 | 16.0 || 83.0 | 4.0
FCol| (2)][65 | 80 || - | - -
3) | 6.0 | 104 |[27.0 | 16.0 || 12.0 | 4.0
(1) 82.5 | 4.3 52.0 | 16.0 || 82.0 | 4.0
ccP [(2) 80 | 49 [180] 5.1 || - -
G) 195 | 7.3 [[30.0 | 202 || 180 | 4.0
(1)]| 85.0 | 5.0 54.0 | 12.0 || 92.0 | 9.8
CQsS (2) 12.5 | 2.5 30.0 | 8.9 - -
G)[25 [25 [[160] 136 || 80 | 9.8
Table 6: Completeness assessment of DRY, ADP, OCP, ISP, and
PINI
DP FG-II FG-IV FG-VI
(1) || 64.0 | 4.9 77.6 | 2.2 50.4 | 14.8
DRY [(2)[260 | 3.7 || - ~ 326 115
(3)]| 10.0 | 7.1 22.4 | 2.2 17.0 | 124
(1) || 66.0 | 159 || 78.6 | 8.7 || 54.0 | 6.9
ADP [(2)[[340 159 - ~ [[240] 96
(3) || 0.0 0.0 21.4 | 8.7 22.0| 94
(1) [73.0 | 4.0 || 80.6 | 16.4 || 68.0 | 14.6
ocP [(180 68 || - - - -
(3) 1 9.0 | 6.6 || 19.4] 164 || 32.0 | 146
(1) || 45.0 | 4.5 80.8 | 11.0 || 44.0 | 14.9
ISP [(2)|[460 102 - ~ [[29.0] 163
3) 1| 9.0 9.2 19.2 | 11.0 || 27.0 | 11.7
(1) || 89.0 | 12.0 || 80.8 | 10.3 || 72.0 | 25.7
PINI [2) [- | - - 1 -
(3) || 11.0 | 12.0 || 19.2 | 10.3 || 28.0 | 25.7

785

790

795

800

805

810

815

820

825

830

835

tion to our proposed set of design best practices. When
considering the coverage achieved by the suggested prac-
tices of FG-III for CCP (18.0), this particular design prin-
ciple reaches 70.0 points. In Table[f] the highest complete-
ness assessment achieves the design principle PINI with
89.0 points by FG-II. Contrarily, the design principle ISP
has only 45.0 points by the same focus group. The reason
for this relatively low number may be the high assessment
of suggested design best practices with 46.0 points.

To better compare the completeness assessments, Fig-
ures [3(a)|and present these data by using a net chart.
Each chart has five dimensions, one for each particular de-
sign principle. Further, the dimensions range from 0 to
100 points, representing the cardinal scale that needed to
be divided into three parts. For this analysis, we concen-
trate on the completeness achieved by our proposed set of
design best practices. Thus, we marked the assessments
of the three focus groups for a particular design principle
on its related dimension. For instance, the design best
practices for ITHI were assessed with 56, 70, and 74 points
by the individual focus groups as shown in the vertical
dimension in Figure The three shapes in the chart
were drawn by connecting the values for each focus group.

As shown in Figure by the green and blue shapes,
two focus groups almost perfectly agree in their assessment
of the completeness of the five design principles. Both as-
sess the completeness of CQS and FCOI as very high with
a value of around 92 and 88 points, respectively. CCP and
IHI achieve good completeness (around 82 and 74 points),
while SRP achieves a completeness of around 55 points.
The third focus group, which is represented by the red
shape, is more critical regarding completeness. Thus, four
principles achieved a completeness of around 54 points and
only for FCOI does their perception go up to 73 points.

Similar to the result of the first set of design princi-
ples, two focus groups correlate in their opinion about the
completeness of the other five principles. Figure dis-
plays these two groups by the green and blue shapes. It
is visible in Figure that the group in green is more
critical compared with the other group, but both focus
groups assign high completeness to PINI and OCP. The
principles DRY and ADP receive moderate completeness
(around 50 points), while ISP has the lowest completeness
with 44 points.

The focus group displayed by the red line assesses the
completeness of all five principles to be around 80 points.
This group was also modest in providing suggestions for
additional design best practices. Due to this reticence and
without considering missing aspects, we assume that they
tend to assess our proposed set of design best practices®
with a higher contribution to completeness. This effect is
evident concerning ISP. For this principle, the other groups
provided suggestions and assessed these suggestions with a
contribution to completeness around 40 points, but FG-IV
did not consider these missing aspects. The consequences®®
of this observation are discussed below.

Figures and provide more details about the

11

IHI

SRP
82,0 |
ccp 88,0 ~FCO
|
—FG-I —FG-lll —FG-V
(a) Comparison principle set I
., ADP

ISP ocp

—FG-Il —FG-IV —FG-VI

(b) Comparison principle set 11

Figure 3: Comparison of design principle coverage

coverage of a particular design principle including the set
of suggested best practices. More specifically, the dashed
line of each focus group represents the assessment of cover-
age achieved by our set of practices (same information as
depicted in Figures and and the corresponding
solid line considers the set of new practices. According to
Figure IHI and SRP can gain most increment with a
final coverage of 86 points based on the judgment of FG-
V. Generally, FG-III provided many new ideas for design
best practices resulting in at least 61.5 points for all five

850

Cas .

855

Cccp 94,0 FCal
~==-FG-l ---FG-lll ----FG-V
—FGl —FG-lll —FG-V

(a) Consideration of suggestions for principle set I

865

870

875

880

-~ -FG-Il

---FG-IV ---FG-VI

—FG-Il =——FG-IV —FG-VI
(b) Consideration of suggestions for principle set IT ots

Figure 4: Consideration of suggestions

principles. A similar picture is shown for FG-VI in Figure
4(b)[with an increase of coverage for all five principles to_
at least 64 points. The principles that achieve the highest
coverage in Figure are PINI, ADP, and OCP with an
assessment around 90 points based on the opinion of FG-II.
In Figure it looks like the red dashed line is missing

12

Table 7: Average completeness of the design best practices

DP Mean Std. DP Mean Std.
Dev. in Dev. in
Points Points
THI 66 14 DRY 65 14
SRP 58 17 ADP 74 16
FCOI 83 13 OCP 65 14
CCP 71 18 ISP 57 20
CcQS 76 19 PINI 81 19

but in fact it is hidden by the red solid line. This fact
results from the circumstance that FG-IV did not suggest
additional best practices as mentioned above.

In order to answer RQ3 that focus on deriving a rep-
resentative group opinion about the completeness of each
design principle, we calculated the average of the assess-
ments including the standard deviation. Table [7| presents
this result. According to this table, FCOI has the high-
est completeness value and lowest standard deviation. In
other words, the groups agree that the design best prac-
tices address the main design concerns of this principle. On
the contrary, ISP has the lowest completeness value and
highest standard deviation. Thus, there is still some uncer-
tainty whether the proposed design best practice (Check-
UnsuitableFunctionality Of Classes) is sufficient to grasp the
intent of the principle.

5. Discussion and Lessons Learned

This part discusses the applied research method and
final results. Therefore, this section is subdivided into the
three phases defined by the discussion process. Before div-
ing into the three phases, we provide some general remarks
on the focus group research approach combined with the
Delphi method.

e Plan enough time resources: Conducting this online
focus group research was time-consuming. First, the
groups started time-delayed. Although this aspect
distributed the workload for handling the groups,
the overall duration increased. In more detail, we
began the first group on 7th February and received
the last reply on 28th April 2017. Second, the par-
ticipants responded slowly. We originally planned a
focus group discussion for four weeks, with the sec-
ond and third phases to be completed within ten
working days. Finally, the average duration of each
group amounted to seven weeks.

e Manage discussion with tool support: In total, 31
experts participated in this research. They were
divided into six groups, which started on different
dates and ran simultaneously. Managing these groups
without proper tool support would have been diffi-
cult because they also had another response behav-

895

900

905

910

915

920

925

930

935

940

945

ior, resulting in various progress levels. To keep the
discussions on track, we used the course and con-eso
tent management tool Moodle. In combination with
email for personal notifications, Moodle was appro-
priate for managing the groups. At this point, it
is important to note that personalized communica-
tion should be preferred when possible. The reasoness
is that we observed faster-responding behavior when
assignments were individually issued.

e Consider potential dropouts: In|Kontio et al.| (2008)),
the authors argue that focus group participants are
more likely to stay with the discussion process since
they provided an initial commitment to contribute.
In our research, however, we observed that two mem-
bers disconnected from the group discussion and could
no longer be reached. Fortunately, that happened in_
the early phases of the first focus groups, so that
the places were filled with participants waiting for
their discussion to start. In other words, partici-
pants from discussions that had not yet started re-
placed these dropouts. Before replacing a discon—970
nected group member, a background check ensured
that the new participants matched the characteris-
tics of the others to keep the homogeneity of the
group. As a consequence, it is important to have a
solid strategy to handle dropouts without threaten—975
ing the research design.

5.1. Brainstorming Phase

The entire discussion started by introducing the topic
of design principles and providing self-study material. We,
encouraged the participants to work on the provided ma-
terial and participate in the group forum. The discussions
in these forums were interesting even though some partic-
ipants were reserved in expressing their opinions. Never-
theless, all participants fulfilled the first task, ensuring ay,
good common level of understanding.

5.2. Clarification Phase

The result of the first task in the second phase shows
that a few groups were restrained in providing a suggestionos
for new design best practices. The most obvious group in
this regard was FG-IV, with no single suggestion at all.
Forcing the groups to provide at least one idea for each
principle would have distorted the research, so we did not
intervene in this regard. Further, the research methodses
does not provide a recommendation for this issue. This
is why we continued the discussions with the individual
group contributions.

To assess the relative importance of each practice, the
suggestions do not have any impact since each practice wasoo
individually assessed. In other words, the evaluation task
in this round did not ask the participants to rank the pro-
posed and suggested design best practices, but rather to
express the relative importance of each practice separately.
Consequently, it is possible to determine a representativeoos

13

group importance for our proposed design best practice
because the participants provided their assessment in the
same circumstances.

Before this focus group research, we conducted a sur-
vey on the general importance of design best practices, but
it did not consider the principle relation (Brauer et al.|
2017b). The result derived from this survey returned a
ranking of the design best practices and an own impor-
tance range based on the standard deviation. This impor-
tance range can be used for up- or downgrading a practice
depending on the project context, which differs according
to project requirements, used frameworks, and the criti-
cality of design quality. To further analyze the result of
this focus group research, we mapped the survey result
with the result of this investigation. Therefore, we checked
each practice to assess whether its relative importance is
within its general range. This was shown for all except
four proposed design best practices.

The first practice is DontReturnMutable CollectionsO-
rArrays that has an importance range from low to high;
however, it is considered to be very high in the context of
IHI. The same applies for CheckUnusedSupertypes in re-
gard to FCOIL. The other two exceptions are assessed in
the context of OCP. As briefly mentioned above, the in-
vestigation did not reveal a design best practice with at
least a high importance for OCP. Consequently, the two
design practices AvoidUncheckedParametersOfSetters and
AvoidPublicFields, which have an importance range from
high to very high, received a downgrade to a moderate
assessment in the context of OCP.

Comparing the survey with the focus group result at
the principle level presents a minor difference for IHI and
DRY. Table I8 shows this deviation. In the context of
IHI, this means that practices — except AvoidManyGetters
— received an equal or higher relative importance com-
pared with the survey result. For instance, DontReturn-
MutableCollectionsOrArrays is considered to be very im-
portant even though the survey concluded a moderate im-
portance. For DRY, this picture is slightly different be-
cause the focus group members tended to be more distinc-
tive. Thus, they assessed AvoidDuplicates, Documentin-
terfaces, and DocumentPublicClasses with a similar im-
portance level as derived from the survey, but the other
practices were downgraded to medium or low.

Summarizing, in almost all cases the same or a higher
importance level was given by the focus group partici-
pants. We consider this to be quite natural, as the re-
lation of a design best practice to a more specific design
principle is easier to grasp than the relation of the design
best practice to general design quality. The design best
practice AvoidMassiveCommentsInCode is one exception
to this rule. The basic underlying idea of DRY in this
context is to choose an appropriate code structure with
appropriate naming and a good documentation of the ap-
plication programmer interface and not to comment the
implementation of methods. This practice seems to be
counterintuitive for the focus group participants.

1010

1015

1020

1025

1030

1035

Table 8: Deviation at the principle level

ﬁs &= | 1040
E Design Best Practice [ORS Z z
BE G
AvoidPublicFields vh vh
DontReturnMutableCollectionsOrArrays | vh m
AvoidUncheckedParametersOfSetters h h
T UselnterfacesAsReturnType h h
~ | AvoidProtectedFields m 1 1045
AvoidSettersForHeavily UsedFields m 1
AvoidManySetters 1 1
AvoidManyGetters vl 1
AvoidDuplicates vh vh
DocumentInterfaces vh h 1050
DocumentPublicClasses h h
E AvoidSimilarAbstractions m h
A | DocumentPublicMethods m h
AvoidSimilarNamesForSameDesignEl. m h
AvoidSimilarNamesForDifferentDesignE. m h
AvoidMassiveCommentsInCode 1 m 1085

very high (vh), high (h), moderate (m), low (1), very low (vl)

5.83. Completeness Assessment Phase

The result of the completeness evaluations of the focusoso
group provides some space for discussion, especially the
effect that two groups in each principle set came to almost
the same assessment for our proposed set of practices.

5.3.1. Discussion of outliers in the first principle set 1065
In the first set of design principles, FG-I and FG-V in-
ferred nearly the same assessment of completeness. One
variable that could have affected the completeness assess-
ment is the number of suggestions the groups provided for
each principle. Tables[I] and [2] depict this information. Agoo
shown there, FG-I suggested additional practices for all
principles, while FG-V provided suggestions just for THI
and SRP. Thus, it is interesting whether FG-V considered
the missing aspects even though they did not submit spe-
cific practices. In fact, the missing aspects were taken intaors
account, as represented by the assessment of the uncov-
ered design aspects. Good examples of this observation
are FCOI and CCP. Overall, we concluded that the num-
ber of suggestions did not affect the perceptions of the two
groups. 1080
Based on this finding, it can be assumed that FG-I
and FG-V are similar in their characteristics but differ
from FG-IIT in another way. Consequently, the standard
deviations within each group were analyzed. This analysis
shows that FG-IIT has the highest standard deviation foross
each principle. In other words, FG-III is the most hetero-
geneous group in this principle set. To be more specific,
the lowest standard deviation for FG-III is 12.0 points,
while the standard deviation for none of the principle in
FG-V goes beyond 10 points. Except for SRP that has ao
standard deviation of 16.6 points (the average assessment

14

of FG-III for SRP deviates by 23.3 points), the same ap-
plies to FG-I. Owing to this finding, it is evident that two
or three members in FG-III tended to have a more critical
view of the assessment of completeness. As a conclusion,
the general opinion of FG-III would move closer to the
others when lowering the critical perceptions.

5.8.2. Discussion of outliers in the second principle set

In the second set of design principles, FG-II and FG-VI
correlate in their assessment, while FG-IV represents the
outlier. As briefly mentioned above, the fact that none
of the participants in FG-IV provided any suggestion for
a new design best practice supports the idea that deep
involvement in this topic did not happen. Consequently,
a representative group opinion of completeness for DRY,
ADP, OCP, ISP, and PINTI is probably too optimistic and
should be downgraded when used in practice.

5.83.3. Consideration of suggestions

The best practices suggested in the second phase are a
valuable input to enhance our measurement tool MUSE.
To evaluate whether they can be implemented and checked
automatically, three MUSE developers individually exam-
ined the underlying idea of each suggestion. If one of
the developers derived a different opinion about the im-
plementability, a joint discussion concluded a shared un-
derstanding of the suggestion and a final agreement on the
potential to be automated.

Next to the requirement of being able to be imple-
mented in MUSE, the contribution of suggestions to the
completeness of the principle was derived. To do so, we
divided the group assessment by the number of sugges-
tions for each principle and each group. For instance, FG-I
concluded that its four suggestions for IHI amount to 26.3
points. In other words, one automated suggestion provides
a contribution to completeness with 6.6 points, when di-
viding this assessment by the number of suggested best
practices (26.3 divided by 4 suggestions). Tables [0 and
depicts the suggestions that can be implemented by the
last column. Hence, the cell is left empty for suggestions
that cannot be automated; otherwise, the cell represents
the contribution to completeness.

Given the information on the contribution to the com-
pleteness of a principle by each rule, we can derive can-
didates that are worth being implemented. For instance,
AvoidInterfaceInheritance represents an important design
aspect for ISP according to FG-VI. Other examples are
AvoidStaticMethods and AvoidNonCohesivelnterfaces with
a high contribution to express SRP or UselnterfaceForEx-
ternalPackageDependencies as another design aspect of
OCP.

While Tables [9] and [I0] depict the relative importance
of the implementable suggestions, they also show the rel-
ative importance of non-automatable rules. By using this
information, a quality manager can derive alternative ways
of checking these practices, especially those with high rel-
ative importance. The suggestion AvoidPretendedObject-

Table 9: Contribution of suggestions I

g]
o | 8¢
5|58
2% | B2
28 | £E
FG Design Best Practice E »g 8 8
UselnterfacesIfPossible 4.2 6.6
FG-1 UselmmutableObjects 2.4 6.6 1
(26.3) DontExposelnternalStructureOfClass 4.0 -
AvoidExposingImpl.DetailsiInMethodN.| 4.0 -
FG-III | MakeClassesPublicIfNecessary 4.6 5.5
(11.0) CheckInterrelatednessOfLayer 3.2 -
?1(;’_3; AvoidReturningCollectionsArrays 3.6 12.0]
FG-1 AvoidDuplicationOfStateInformation 3.6 -
(17.5) CheckMethodUsageDynamically 2.0 -
AvoidUnbalancedInheritance.Hierarchie| 3.6 -
?1(;5-.101)1 AvoidUnrelatedFields 44 | 50 |
UseCompositionNotInheritance 5.0 5.0
FG-V AvoidStaticMethods 4.4 16.0
(32.0) AvoidNonCohesivelnterfaces 3.4 16.0
?55-)1 AvoidLargeObjects 2.8 6.5
1(:;3(;6)1 UseCoherentNaming 1.4 -
FG-IIT | AvoidSharedClassesInSubPackages 4.0 9.0
(18.0) | AvoidSimplyDep.AcrossMultiplePkg. 2.8 9.0
(1:1‘5_51) AvoidReturningCont.Obj.FromComm. 1.4 -
FG-III | AvoidMutableFieldsWhenPossible 4.6 15.0
(30.0) | AvoidPretendedObjectStates 5.0 -
Table 10: Contribution of suggestions II
8 n
o | §8
E |58
2t | 2%
28 | EE
FG Design Best Practice £ .—48 CO) 8
FGAIT UseMeaningful VariableNames 4.8 -
(26.0) CheckPrivateMethodUsage 2.2 -
CheckGroupingOfUtilityClasses 3.4 -
FG-VI | AvoidSamelnformationInDiff. Artifacts 4.0 -
(32.6) | AvoidDeadCode 42 | 16.3
AvoidNonCohesivePkg.Implementationy 3.4 11.3
E’i_é; UseStrictLayering 3.8 -
KeeplInterfacelmplementationsTogether | 3.2 11.3
FG-VI | AvoidReferencinglmplementationPkg. 3.7 12.0 |
(24.0) AvoidPropertylInjection 2.2 -
?12_(1]; UselnterfaceForExternalPackageDep. 4.4 18.0
a(é_é; CheckUnrelatedMethods 4.8 -
?2%‘.3’)1 AvoidInterfaceInheritance 35 | 29.0 4

95

100

105

110

115

120

125

15

States, for example, is considered to be very important
for CQS but it cannot be implemented in MUSE. Subse-
quently, it makes sense to think about other techniques
to check this rule in the source code. Additional candi-
dates are UseMeaningfulVariableNames and CheckUnre-
latedMethods that both require understanding the under-
lying semantics of the variables and methods, respectively.

5.3.4. Uncertainty for interpreting the design principles

During the focus group research, some participants ex-
pressed uncertainty about the interpretation of the princi-
ples. To understand this issue, we examined the average
of the assessments reflecting the uncovered aspects of each
design principle. Ordering the principles according to this
value returned a ranking, as depicted in Table Accord-
ing to the table, OCP, SRP, and CCP have the highest
degree of uncovered design aspects. This could infer that
their definitions still leave space for interpretation and are
difficult to grasp. Otherwise, the groups would have pro-
vided a suggestion for design best practices or would have
assessed the uncovered aspects as low.

On the opposite side of the ranking are CQS, ADP, and
FCOI with the lowest assessments of uncovered design as-
pects. Either they have been addressed with suggestions
or the principle is precisely enough defined so that the ap-
propriate design best practices were identified beforehand.
Regardless of which fact, we conclude that these principles
are clearer and can be followed by design best practices.

Table 11: Principle ranking

DP Mean of

uncovered

aspects
ocCp 20.8
SRP 20.4
CCP 19.9
PINI 18.8
ISP 18.5
THI 17.9
DRY 16.1
FCOI 15.6
ADP 15.4
CQS 9.3

6. Limitations

In any experimental study, some factors influence the
findings and represent threats to validity. In more de-
tail, threats to internal validity concern any confounding
variables that could have influenced the outcome (Wohlin
et al., 2012). The decision to conduct online focus group
discussions instead of on-site (face-to-face) discussions rep-
resents such a threat in our perception. Thus, communica-
tion via text is less rich because it misses body language or

1130

1135

1140

1145

1150

1155

1160

1165

1170

1175

1180

1185

facial expression and text can be misunderstood (Kontio
et al.l |2008). For the sake of anonymity, we accepted the
lack of body language in discussions. Further, the open
discussion part was reduced to the brainstorming phase,
which focused on getting participants to the same level. Tai
address the problem of misunderstandings, we explicitly
consulted participants to clarify, for example, a suggested
design best practice.

Another internal threat to validity is the selection and
segmentation of participants. To control this issue, weaios
checked the software engineering skills of the volunteers
by using a previous survey. More specifically, participants
who assessed their object-oriented programming expertise
as good or top were invited to participate in a focus group.
The re-participation of these participants may result in the
issue that they have a knowledge advance compared to the
others. To mitigate this threat, we provided the same in+o
formation to the participants, who got in touch with our
design best practices for the first time. The three focus
groups arranged by our research partner contained senior
software engineers with top engineering competencies and
with ambitions to consolidate their software design knowlizos
edge. Moreover, the segmentation of participants was con-
ducted in a way that focused on ensuring homogeneity
among the teams. Therefore, members of the same com-
pany were part of the same group.

The most critical internal threats may have been introszio
duced by the provided material and the proposed relation-
ships between the design principles and design practices.
Each design principle was explained by using a separate
lesson in Moodle, which systematically structured the in-
formation. However, we did not verify the understandingzs
of the design principles but rather asked the participants
to discuss an aspect or example of each principle in a group
forum. Based on these discussions, we could ensure that
everybody understood the main intention of each princi-
ple. Confronting the participants with a mapping betweenz
principles and practices suggests a relevant relationship to
some extent. Consequently, a participant would tend to
not argue against this relationship. However, we observed
examples where a group voted against a proposed relation-
ship between a principle and practice, thus showing theirzs
critical reflection of the assignment.

Threats to external validity concern the ability to gen-
eralize the results (Wohlin et al.l 2012). In this regard,
we do not see a major threat because the design princi-
ples were discussed independently of object-oriented pro+eso
gramming languages and detached from any application
context. Nevertheless, we currently know a set of 67 de-
sign best practices (see [Plosch et al.| (2016b))) containing
the rules for Java, C++, and C# (some of these rules are
used to measure design principles not mentioned in thisess
article). Consequently, these findings can be transferred
to other programming languages but with particular care;
for C++, additional design features such as multiple in-
heritance or macros are available.

The number of participants may also represent a lim-zao

16

itation in this study. In total, two sets of five principles
were separately discussed by 15 (+1) participants. While
it can be argued that 15 opinions to one principle are still
too few, we observed that the complexity of the topic pre-
supposes an in-depth examination of the design principles
that cannot be achieved by conducting a broad investiga-
tion in the form of, for example, an online survey. This is
not possible because critically reflecting on design princi-
ples and design best practices cannot be performed within
the short time given by a typical survey setting. Conse-
quently, we conclude that a focused discussion of a small
group on one topic reveals more valuable insights.

7. Conclusion and Future Work

Design principles in software engineering are essential
for software developers and designers because they com-
municate design knowledge for building software that en-
sures internal quality attributes (-ilities) such as maintain-
ability, functional suitability, and portability. However,
they are too vague to be appropriately applied in prac-
tice. Therefore, we aim to operationalize design principles
by using design best practices, which in turn are concrete
enough to be followed. Although we have previously built
a design quality model that reflects the relationship be-
tween design principles and the assigned best practices
(Plosch et all 2016a), we are not aware of the strength
of the relationship or whether we forgot design best prac-
tices for a particular principle. Due to these remaining
research questions, this investigation was undertaken and
returned following key contributions for the community.

First, the focus group research derived a clear picture
of the importance of design best practices in relation to
the assigned design principles. This picture rests upon
the opinions of at least 15 senior software engineers (five
groups of five and one of six participants — each assessing
five design principles) with a solid awareness of software
design. Based on the findings, design improvement actions
can be preselected and prioritized to invest in the effort
that has the highest improvement impact. Assuming a
project team wants to enhance its compliance with the
IHI, the avoidance of public fields is more important than
protected fields. Thus, this gained information is used to
guide improvements to be most effective.

The findings have relevance not only for design im-
provements but also for the quality task of design assess-
ments. For instance, and by using the above example,
public fields in a class are more critical compared with
protected fields. In fact, the weight is determined by the
derived importance level and can be used to assess, for ex-
ample, the compliance of information hiding. In (Plosch
et al.,|2016al), we show an instantiation of a design quality
model suitable for this purpose and that can be adjusted
based on the derived weights.

Another contribution is the identification of missing
design practices that affect a particular design principle.
In fact, 32 additional design practices were suggested by

1245

1250

1255

1260

1265

1270

1275

1280

1285

1290

the six focus groups. While some of the suggested design
practices represent manual measures, meaning that theyeos
cannot be automated, a set of 18 practices could be imple-
mented in a design analysis framework, particularly in our
MUSE tooling. The agenda of our future work contains
the implementation of these suggestions, including a joint
assessment of their relevance for a design principle. Hints,,,
for this judgment can be derived from the group opinion
of the team that suggested the practice.

Finally, the assessment of the obtained completeness
of each design principle shows that most design aspects
are covered by design best practices. In other words, none
of the principles is missing a central element. Moreover;ss
the high degree of rule automation depicts that the oper-
ationalization of design principles can be conducted auto-
matically.

For future research avenues, we plan to examine the
design quality model based on the gained findings from
this study within an industrial setting. By using the tech-
nical action research approach proposed by [Wieringa &%
Morall (2012), the artifact — the design quality model —
will be evaluated regarding its suitability and usefulness
for design quality assessments. Furthermore, we have pub-
lished a (benchmark-based) design improvement portfolio
approach that addresses the quality task of guiding imasis
provement actions (Brauer et al., 2017a). This approach
has been introduced at the level of design best practices.
Now, the results from this study can be incorporated into
the portfolio technique to provide better recommendations
at the level of design principles. An evaluation of this de-
sign improvement guidance is pending. In general, a bet320
ter understanding of design principles is essential for the
software engineering discipline since they are strong de-
sign guidelines as indicated by |Stevenson & Wood, (2017).
Hence, future work has to focus on this aspect.

1325

Appendix A. Design Best Practices

e AbstractPackagesShouldNotDependOnOtherPackages: A
package containing a high number of abstract classes and
interfaces should not depend on other packages. 1350

e AvoidCommandsInQueryMethods: A public method id-
entified as query method should not change the state of
the object and can only call query methods of the same
class. A public method is identified as query method
when its name starts with a defined prefix such as get
has, or is.

1335

e AvoidDuplicates: The source code should be free of du-
plicates.

o AvoidManyGetters: The ratio between getter methods
and the total number of fields should not exceed a certain’*
threshold.

0

o AvoidManySetters: The ratio between setter methods
and the total number of fields should not exceed a certain
threshold.

1345

17

AvoidMassiveCommentsInCode: A method should not
have too many comment lines in the code. The method
documentation (API-documentation) and blank lines are
not considered.

AvoidNonCohesivelmplementations: A class should not
have sets of methods that are not related to each other.
Related means that they use/change the same set of fields
or are connected by method calls.

AvoidNonCohesivePackages: A package should be as co-
hesive as possible, i.e., packages should not contain inde-
pendent groups of classes.

AvoidPackageCycles: The usage of classes and interfaces
in different packages should not create a package cycle.

AwvoidProtectedFields: A class should not have protected
fields.

AvoidPublicFields: A class should not have public fields.

AvoidPublicStaticFields: A class should not have global
variables, i.e., no public static fields.

AvoidReturningDataFromCommands: A public method
identified as command method should not return any
kind of data regardless whether the data is related to
the internal state of the object or not.

AvoidRuntime Typeldentification: Type checks of objects,
i.e., use of instanceof operator in Java or the typed opera-
tor as well as the dynamic_cast operator in C++, should
be avoided.

AvoidSettersForHeavily UsedFields: A class should not
have setter methods for a private field that is heavily
used. A field is heavily used if it is read or written in more
than five methods including getter and setter methods.

AvoidSimilarAbstractions: Different types should not re-
present a similar structure or behavior. Two classes have
a similar structure if the fields with same type and a simi-
lar name (word stem) overlap by a particular percentage.
Two classes have a similar behavior if methods with the
same return type and parameter types as well as similar
name (word stem) overlap by a particular percentage.

AwvoidSimilarNamesForDifferentDesignElements: Design
elements of different kinds should not have similar names,
i.e., a package name should not be similar to a class name.

AvoidSimilarNamesForSameDesignFElements: Design el-
ements of same kind (e.g., (abstract) classes, interfaces,
or packages) should not have similar names.

AwvoidStronglyCoupledPackages: A package should not
heavily depend on other packages. Therefore, packages
containing many classes that depend on types from other
packages should be avoided.

AvoidUncheckedParametersOfSetters: A field should only
be set by a method parameter that is checked before.
This can be verified by checking whether setting the field
by a parameter of a (set)-method is always (or at least
often) guarded by checks.

1350

1355

1360

1365

1370

1375

1380

1385

1390

1395

o CheckUnsuitable FunctionalityOfClass: The methods of a
class should be used as whole and not only (small) sets of
them. If clients typically use only parts of the methods
provided by a class, the functionality of the providing
class seems not fit the needs of the clients. 1400

o CheckUnusedSupertypes: If clients (not subclasses!) of a
class use only the public methods of the current subtype
and do not use any methods of a supertype, then there is
not a true is-a relationship between the class (subtype)
and its supertype. 1405

e DocumentInterfaces: An interface must have an API-
documentation for the interface declaration and each me-
thod signature.

e DocumentPublicClasses: A public class and public structaio
(in C++) must have an API-documentation, i.e., com-
ments above the declaration or the definition of the par-
ticular entity.

e DocumentPublicMethods: A public method within a pub-
lic class must have an API documentation, i.e., comments
above the method declaration or the definition of the par=*""°

ticular entity.

e DontReturnMutableCollectionsOrArrays: A method should
not return an array or an instance of a collection type. A
method is excluded from this rule when the return value
is immutable or cloned before. 1o

e DontReturnUninvolvedDataFromCommands: A comma-
nd method that changes the state of the object or class
cannot return data that is not related to the change.

e ProvidelnterfaceForClass: A public class should provide,,,
an interface that is used as type for variables and param-
eters. Classes that provide only access to static members
are excluded by this rule.

o UseAbstractions: A package should provide a sufficient
number of abstract classes and interfaces expressed by,
the ratio between abstract and concrete types.

o UseCompositionNotInheritance: A class should use com-
position instead of inheritance when the class accesses
only public members from the particular superclass. In-

terfaces and abstract classes are excluded by this rule.
1435

o UselnterfacesAsReturnType: If the return type of a method
is not a base data type, it should be the interface or the
abstract superclass of the class.

o UselnterfacesIfPossible: Use an interface for variable dec-
larations, parameter definitions, or return types instead4o
of a public class when the interface provides all methods
that are needed.

Appendix B. Suggested Best Practices

1445

e UselmmutableObjects: Use immutable objects as far as

possible, i.e., field initialization in constructors and const/final

members.

18

DontEzposelnternalStructure OfClass: Internal design de-
cisions should not be recognizable to clients by means of
the class interface (method naming, granularity, parame-
ters, and return values). For example, a client should not
know if a point is stored as polar coordinates or Carte-
sian coordinates (e.g., by using a “getX()” and “getY()”
method for Cartesian coordinates, but a “calculateRa-
dius()” and “calculatePolarAngle()” method for polar co-
ordinates).

AvoidExposingImplementationDetailsInMethodNames: The
name of a public method should not expose the imple-
mentation details.

MakeClassesPublicIfNecessary: A class or data structure
not part of the public interface of a component or package
should be private.

CheckInterrelatednessofLayer: 1t should be explicitly spec-
ified which layers are allowed to interact with the other
layers.

AwvoidReturningCollectionsArrays: Avoid returning a col-
lection of arrays or an array of collections.

AwvoidDuplication OfStateInformation: The state of a part
of an application should be represented in a single class
and only be retrieved by other classes from there with-
out permanently duplicating the state information in the
local fields of the client classes.

CheckMethodUsageDynamically: Check during runtime
whether there are groups of methods used in the different
life-time phases of an object.

AvoidUnbalancedInheritance AndDelegation Hierarchies:
Factorize complex implementation details into separate
classes that are integrated by using delegation. Addi-
tionally, avoid complex inheritance structures in the del-
egated classes.

AvoidUnrelatedFields: A class should not have fields with
unrelated semantics.

AwvoidStaticMethods: A class should not define static meth-
ods, except for special cases such as implementing the
singleton pattern.

AvoidNonCohesivelnterfaces: An interface should not
have sets of interface methods that are not related to
each other. Related means that an interface is fully im-
plemented by its implementations without providing de-
fault methods.

AvoidLargeObjects: Avoid inheritance when inheritance
results in objects with a huge number of fields (aggre-
gated by all classes in the inheritance tree).

UseCoherentNaming: Groups of classes belonging to-
gether in a package should be named coherently (i.e.,
indicate their belonging to this group by a stable part of
the class name).

o AvoidSharedClassesInSubPackages: A shared class, which

is used by classes in different packages and is no generic
API, should be in a super package related to the classes
(clients) using it.

1450

1455

1460

1465

1470

1475

1480

1485

1490

1495

1500

AwvoidSimplyDependenciesAcrossMultiplePackages: A class
depending on just another class should be in a sub-package
of the dependent class.

AwvoidReturningContainerObjectsFromCommands: If the
state of an object is changed by a command, the returned
data should be at the finest possible level of granularity
(e.g., if only one item in a list is changed, the whole list

should not be returned).
1510

AvoidMutableFields WhenPossible: A field should be pri-
vate and final when it is never changed.

AwvoidPretendedObjectStates: The state of an object us-
ing its properties should never be pretended (e.g., thé®”
return type of a query should represent the real object
state).

UseMeaningful VariableNames: Variable names must be,
meaningful.

CheckPrivateMethodUsage: A private method cannot be
reused outside the class and might lead to duplications.
1525

CheckGroupingOfUtilityClasses: Utility classes should be
grouped, ideally in the same package.

AvoidSamelnformationInDifferentArtifacts: Decisions made
in the design process should not repeatedly be describeds
in other artifacts and at other levels; for example, the
reason for splitting a component described in the archi-
tecture should not be repeated in the design of the com-
ponent. 1535

AvoidDeadCode: The unused code in a method should
be removed.

AvoidNonCohesivePackagelmplementations: A packagesso
should be as cohesive as possible (i.e., packages should
not contain independent groups of classes).

UseStrictLayering: By grouping the libraries into layers,
you can define where those libraries intersect. Low-levet
layers must not use functionality from upper-level layers.

545

KeeplInterfaceImplementationsTogether: Group classes in

the same package that share the same interface. 1550

AwvoidReferencinglmplementationPackages: Avoid depen-
dencies between concrete (implementation) packages but
use abstract packages instead. Within abstract packages,
it is only allowed to place interfaces and super classes. 1sss

AwvoidPropertyInjection: A class property should not be
injected from outside the class.

UselnterfaceForExzternalPackageDependencies: Use iniseo
terfaces for access by classes outside the package. Use
abstract classes for classes that will be in the same pack-
age or library.

CheckUnrelatedMethods: If a method is unrelated to its™
class, then it should be in another class.

AvoidInterfaceInheritance: Avoid extensive usage of the
inheritance mechanism with interfaces since this mightsy,
lead to unspecific and broad interfaces.

19

References

Abdeen, H., Sahraoui, H., & Shata, O. (2013). How We Design Inter-
faces, and How to Assess It. In 29th IEEE International Confer-
ence on Software Maintenance (ICSM) (pp. 80-89). Eindhoven,
Netherlands: IEEE. doii10.1109/ICSM.2013.19.

Adler, M., & Ziglio, E. (1996). Gazing Into the Oracle: The Delphs
Method and Its Application to Social Policy and Public Health.
London, UK: Jessica Kingsley Publishers.

Briand, L. C., Daly, J. W., & Wust, J. K. (1999). A uni-
fied framework for coupling measurement in object-oriented sys-
tems. IEEFE Transactions on Software Engineering, 25, 91-121.
doii10.1109/32.748920.

Briand, L. C., Wist, J., & Lounis, H. (2001). Replicated Case
Studies for Investigating Quality Factors in Object-Oriented De-
signs. Empirical Software Engineering, 6, 11-58. doii10.1023/A:
1009815306478

Brauer, J., Plosch, R., Saft, M., & Korner, C. (2017a). Improv-
ing object-oriented design quality: A portfolio- and measurement-
based approach. In Proceedings of the 27th International Work-
shop on Software Measurement and 12th International Confer-
ence on Software Process and Product Measurement TWSM Men-
sura ’17 (pp. 244-254). Gothenburg, Sweden: ACM. doi:10.1145/
3143434.3143454.

Brauer, J., Plosch, R., Saft, M., & Korner, C. (2017b). A Sur-
vey on the Importance of Object-oriented Design Best Practices.
In 43rd Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA) (pp. 27-34). Vienna, Austria: IEEE.
doii10.1109/SEAA.2017.14.

Charalampidou, S., Ampatzoglou, A., & Avgeriou, P. (2014). A Pro-
cess Framework for Embedded Systems Engineering. In /0th Eu-
romicro Conference on Software Engineering and Advanced Ap-
plications (SEAA) (pp. 137-140). Verona, Italy. doi:10.1109/
SEAA.2014.58.

Chidamber, S. R., & Kemerer, C. F. (1994). A Metrics Suite for
Object Oriented Design. IEEE Transactions on Software Engi-
neering, 20, 476-493. doii{10.1109/32.295895.

Churcher, N., Frater, S., Huynh, C. P., & Irwin, W. (2007). Support-
ing OO Design Heuristics. In 18th Australian Software Engineer-
ing Conference (ASWEC) (pp. 101-110). Melbourne, Australia:
IEEE. doi:10.1109/ASWEC. 2007 .47.

Coad, P., & Yourdon, E. (1991). Object-Oriented Design. London,
UK: Prentice Hall.

Dooley, J. (2011). Object-Oriented Design Principles. In Software
Development and Professional Practice (pp. 115-136). Berkeley,
CA, USA: Apress. doii10.1007/978-1-4302-3802-7_10.

Edmunds, H. (2000). Focus Group Research Handbook. (1st ed.).
Lincolnwood, I1l.; St. Albans: McGraw-Hill.

Hunt, A., & Thomas, D. (1999). The Pragmatic Programmer: From
Journeyman to Master. Boston, MA, USA: Addison-Wesley.
Kontio, J., Bragge, J., & Lehtola, L. (2008). The Focus Group
Method as an Empirical Tool in Software Engineering. In F. Shull,
J. Singer, & D. I. K. Sjgberg (Eds.), Guide to Advanced Em-
pirical Software Engineering (pp. 93-116). Springer London.

doii10.1007/978-1-84800-044-5_4.

Linstone, H. A., & Turoff, M. (1975). The Delphi method: techniques
and applications. Addison-Wesley Pub. Co., Advanced Book Pro-
gram.

Marinescu, R. (2004). Detection Strategies: Metrics-Based Rules for
Detecting Design Flaws. In 20th IEEE International Conference
on Software Maintenance (ISCM) (pp. 350-359). Chicago, IL,
USA: IEEE. doii10.1109/ICSM.2004.1357820.

Martin, R. C. (1996). Granularity. C++ Report, 8, 57-62.

Martin, R. C. (2003). Agile Software Development : Principles,
Patterns and Practices. Upper Saddle River, NJ, USA: Pearson
Education.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software
Craftsmanship. (1st ed.). Upper Saddle River, NJ: Prentice Hall.

Meyer, B. (1997). Object-oriented software construction. (2nd ed.).
Upper Saddle River, N.J: Prentice Hall PTR.

Morgan, D. L. (1997). Focus Groups as Qualitative Research vol-
ume 16. SAGE Publications.

http://dx.doi.org/10.1109/ICSM.2013.19
http://dx.doi.org/10.1109/32.748920
http://dx.doi.org/10.1023/A:1009815306478
http://dx.doi.org/10.1023/A:1009815306478
http://dx.doi.org/10.1023/A:1009815306478
http://dx.doi.org/10.1145/3143434.3143454
http://dx.doi.org/10.1145/3143434.3143454
http://dx.doi.org/10.1145/3143434.3143454
http://dx.doi.org/10.1109/SEAA.2017.14
http://dx.doi.org/10.1109/SEAA.2014.58
http://dx.doi.org/10.1109/SEAA.2014.58
http://dx.doi.org/10.1109/SEAA.2014.58
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1109/ASWEC.2007.47
http://dx.doi.org/10.1007/978-1-4302-3802-7_10
http://dx.doi.org/10.1007/978-1-84800-044-5_4
http://dx.doi.org/10.1109/ICSM.2004.1357820

1575

1580

1585

1590

1595

1600

1605

1610

1615

1620

1625

Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a
research tool: an example, design considerations and applications.
Information & Management, 42, 15-29. doi:10.1016/j.im.2003.
11.002.

Plosch, R., Brauer, J., Korner, C., & Saft, M. (2016a). Measur-
ing, Assessing and Improving Software Quality based on Object-
Oriented Design Principles. Open Computer Science, 6, 187-207.
doii10.1515/comp-2016-0016.

Plosch, R., Brauer, J., Korner, C., & Saft, M. (2016b). MUSE -
Framework for Measuring Object-Oriented Design. Journal of
Object Technology, 15, 2:1-29. doii10.5381/jot.2016.15.4.a2,

Riel, A. J. (1996). Object-Oriented Design Heuristics. (1st ed.).
Reading, MA, USA: Addison-Wesley.

Samarthyam, G., Suryanarayana, G., Sharma, T., & Gupta, S.
(2013). MIDAS: A Design Quality Assessment Method for Indus-
trial Software. In 35th International Conference on Software En-
gineering (ICSE) (pp. 911-920). San Francisco, CA, USA: IEEE.
doii10.1109/ICSE.2013.6606640.

Schmidt, R. C. (1997). Managing Delphi Surveys Using Nonparal63?
metric Statistical Techniques. Decision Sciences, 28, T763-774.
doii10.1111/3j.1540-5915.1997.tb01330.x.

Sharma, T., Samarthyam, G., & Suryanarayana, G. (2015). Applying
Design Principles in Practice. In 8th India Software Engineering
Conference (ISEC) ISEC ’15 (pp. 200-201). Bangalore, India:
ACM. doii10.1145/2723742.2723764. 1635

Srivastava, S., & Kumar, R. (2013). Indirect method to measure
software quality using CK-OO suite. In 2018 International Con-
ference on Intelligent Systems and Signal Processing (ISSP) (pp.
47-51). IEEE. doii10.1109/ISSP.2013.6526872.

Stevenson, J., & Wood, M. (2017). Recognising object-oriented
software design quality: a practitioner-based questionnaire sur-
vey. Software Quality Journal, (pp. 1-45). doi:10.1007/
s11219-017-9364-8.

Subramanyam, R., & Krishnan, M. S. (2003). Empirical Analysis of
CK Metrics for Object-Oriented Design Complexity: Implications
for Software Defects. IEEE Transactions on Software Engineer-
ing, 29, 297-310. doi{10.1109/TSE.2003.1191795.

Turney, L., & Pocknee, C. (2005). Virtual Focus Groups: New Fron-
tiers in Research. International Journal of Qualitative Methods,
4, 32-43. doi:10.1177/160940690500400203.

Wieringa, R., & Morali, A. (2012). Technical Action Research
as a Validation Method in Information Systems Design Sci-
ence. In 7th International Conference on Design Science Re-
search in Information Systems: Advances in Theory and Prac-
tice (DESRIST) Lecture Notes in Computer Science (pp. 220-
238). Las Vegas, NV, USA: Springer-Verlag, Berlin, Heidelberg,,,
doii10.1007/978-3-642-29863-9_17.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M. C., Regnell, B., &
Wesslén, A. (2012). Ezperimentation in Software Engineering.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-29044-2.

1645

About the Authors

Johannes Brauer received his Doctoral Degree at the
Department of Business Informatics - Software Engineer-
ing at the Johannes Kepler Universitiy Linz. His thesigsso

20

concentrates on measuring and assessing software design
based on fundamental design principles. Further, his re-
search interests are in software code quality and technical
debt assessment approaches.

Reinhold Plésch is associate professor for Software
Engineering at the Department of Business Informatics -
Software Engineering at the Johannes Kepler University
Linz. He is interested in source code quality - ranging
from basic code quality to quality of embedded and safety
critical systems. He is also interested in automatically
measuring the object-oriented design quality based on de-
sign principles.

Matthias Saft is working at Siemens Corporate Tech-
nology on software development related topics. His focus
is code and design quality, its measurement, visualization
and improvement. A corresponding architectural founda-
tion is obligatory, and likewise considered. Additionally,
he is interested in large scale lean and agile development
methodologies, and their application in an industrial con-
text.

Christian Korner is Senior Key Engineer at Siemens
Corporate Technology in Munich. Professional interests
are in the area of technical and management methods
for Development Efficiency. Projects focus in the recent
years was on developing and applying artefact based as-

http://dx.doi.org/10.1016/j.im.2003.11.002
http://dx.doi.org/10.1016/j.im.2003.11.002
http://dx.doi.org/10.1016/j.im.2003.11.002
http://dx.doi.org/10.1515/comp-2016-0016
http://dx.doi.org/10.5381/jot.2016.15.4.a2
http://dx.doi.org/10.1109/ICSE.2013.6606640
http://dx.doi.org/10.1111/j.1540-5915.1997.tb01330.x
http://dx.doi.org/10.1145/2723742.2723764
http://dx.doi.org/10.1109/ISSP.2013.6526872
http://dx.doi.org/10.1007/s11219-017-9364-8
http://dx.doi.org/10.1007/s11219-017-9364-8
http://dx.doi.org/10.1007/s11219-017-9364-8
http://dx.doi.org/10.1109/TSE.2003.1191795
http://dx.doi.org/10.1177/160940690500400203
http://dx.doi.org/10.1007/978-3-642-29863-9_17
http://dx.doi.org/10.1007/978-3-642-29044-2

sessment methods for development organisations and au-
tomatic evaluation of software (design) quality. Projects
range from small project interventions to large research
collaborations with international partners.

21

	Introduction
	Related Work
	Design Principles
	Focus Group Research

	Focus Group Research Design
	Research Planning
	Focus Group Design
	Selection of Participants
	Segmentation of Participants

	Focus Group Discussion
	Brainstorming Phase
	Clarification Phase
	Completeness Assessment Phase

	Results
	Suggestions for additional design best practices
	Relative importance of the design best practices
	Completeness achieved by the design best practices

	Discussion and Lessons Learned
	Brainstorming Phase
	Clarification Phase
	Completeness Assessment Phase
	Discussion of outliers in the first principle set
	Discussion of outliers in the second principle set
	Consideration of suggestions
	Uncertainty for interpreting the design principles

	Limitations
	Conclusion and Future Work
	Design Best Practices
	Suggested Best Practices

