
Improving Object-Oriented Design �ality: A Portfolio– and
Measurement-Based Approach

Johannes Bräuer
Johannes Kepler University Linz

Linz, Austria
johannes.braeuer@jku.at

Reinhold Plösch
Johannes Kepler University Linz

Linz, Austria
reinhold.ploesch@jku.at

Matthias Saft
Corporate Technology Siemens AG

Munich, Germany
matthias.saft@siemens.com

Christian Körner
Corporate Technology Siemens AG

Munich, Germany
christian.koerner@siemens.com

ABSTRACT
Current software development trends have shortened release cy-
cles and forced developers to implement short-term solutions that
cannot cope with increasing product complexity. This phenome-
non of introducing hasty design choices or applying bad design
practices becomes something known as technical debt, in particular
design debt. To pay o� this debt, the literature o�ers approaches
for identifying these design �aws; however, few methods for prop-
erly prioritizing investment e�orts are available. In this paper, we
propose an approach that supports the decision-making process re-
garding design improvements. It identi�es violations of design best
practices that are then arranged within a two-dimensional portfolio
matrix. This matrix combines the importance of practices of design
quality with actual achievement relative to a benchmark suite. To
show the application of the approach in a quality-improvement pro-
cess, we performed a feasibility study on three open-source projects
and a benchmark suite containing 50 projects. This study clearly
shows that the importance of the design best practices greatly im-
pacts the improvement decisions and must be aligned with the
strategic quality goals of the product.

CCS CONCEPTS
• Software and its engineering → Software design tradeo�s;
Software veri�cation and validation;

KEYWORDS
software quality, design quality, technical debt, design debt
ACM Reference format:
Johannes Bräuer, Reinhold Plösch, Matthias Saft, and Christian Körner. 2017.
Improving Object-Oriented Design Quality: A Portfolio– and Measurement-
Based Approach. In Proceedings of Joint Conference of the International
Workshop on Software Measurement and the International Conference on
Software Process and Product Measurement, Gothenburg, Sweden, October
2017 (IWSM-Mensura), 11 pages.
DOI: 10.475/123_4

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
IWSM-Mensura, Gothenburg, Sweden
© 2017 Copyright held by the owner/author(s). 123-4567-24-567/08/06. . . $15.00
DOI: 10.475/123_4

1 INTRODUCTION
Software systems must continuously evolve to cope with constantly
changing requirements and environments [26]. To handle these
challenges, many software projects choose design and development
approaches that support short deployment cycles but lack the ability
to manage increasing product complexity. Without consideration
of the �aws that have been introduced due to time pressure, overall
development and maintenance costs can increase in the long run. In
1992, Cunningham already pointed to this phenomena introducing
the term technical debt [8].

Design debt, as a particular type of technical debt referring to
�aws in software design, expresses the additional maintenance ef-
fort required in the future that results from hasty and inappropriate
design choices in the past or from applying bad programming prac-
tices. Generally, these issues are symptoms of higher-level design
problems, known as design �aws [19], design smells [10], anti-
patterns [4] or violated design principles [21]. Thus, identifying
these issues is the �rst step towards paying back the debt.

To identify design issues, this work follows the approach of
�nding violations of object-oriented design best practices directly
in the source code. In the remainder of this article, we use the
term design best practices while always referring to object-oriented
design best practices. Typically, design best practices allow the
reuse of expert knowledge and can therefore be applied to guide
software designers and developers. To �nd the violations of design
best practices, we developed a tool called MUSE because there is no
tool available that would provide the �exbility to speci�y and check
such best practices directly in code [25]. MUSE contains a set of
design best practices (design rules) for the programming languages
Java, C# and C++. Most design rules cover all three programming
languages, since they are related to object-oriented concepts rather
than language features.

Based on a MUSE measurement, which is a compiled list of
design best practice violations referencing exact locations in the
source code, developers can start to investigate the problem spots.
Nevertheless, they are left in the dark regarding where to actu-
ally invest e�ort to pay o� particular instances of the design debt.
Consequently, an important next step is to provide guidance for
decisions about addressing appropriate design improvements and
suggestions for refactoring. As explained by Brown et al. [3], this
decision depends on various factors, such as the value of the debt,

reinhold
Schreibmaschinentext
Preprint - original version can be found here: https://dl.acm.org/citation.cfm?id=3143454

IWSM-Mensura, October 2017, Gothenburg, Sweden J. Bräuer et al.

the interest rate one currently pays on the debt and potential impact
the debt has on future development. Typically, debt will be paid for
the purpose of making a lucrative investment in the software.

In order to guide developers towards the most lucrative invest-
ments, this paper proposes a portfolio matrix approach that in-
corporates two dimensions for quantifying and prioritizing design
improvements. First, it considers the importance of the violated
design best practices derived from a survey [5]. Second, it expresses
the current quality level of each practice relative to a benchmark
suite. These two dimensions are then mapped in order to recom-
mend which debt items should be paid and which can be ignored
in the �rst place. To show the bene�ts of this portfolio matrix, this
paper describes the approach and then provides a realistic exam-
ple using three open-source projects and a benchmark base that
amount to 4.55 million logical lines of code (LLOC). This investiga-
tion is limited to the programming language Java, meaning that all
projects are written in this language and the set of design rules in
MUSE is reduced to Java rules. A full validation is not provided but
will be addressed in future research.

The remainder of this article is structured as follows. The next
section dives into related work in regard to object-oriented de-
sign assessment and the prioritization of refactorings. Afterwards,
our approach for guiding design improvements is presented by
discussing the concepts of measuring design best practices and
assessing a project against a benchmark suite. In Section 4, the
feasibility study shows the way to proceed from measuring over
assessing to deriving appropriate design improvements in open-
source projects. Finally, the paper draws conclusions and provides
avenues for future work.

2 RELATEDWORK
For this work, we rely on contributions from two research areas.
First, this section shows approaches for measuring and assessing
object-oriented software design. Second, it re�ects ideas for priori-
tizing and guiding design improvements.

To measure object-oriented design quality, the literature distin-
guishes several di�erent approaches. Metric-based approaches such
as QMOOD [1] and the metric suite provided by Chidamber and
Kemerer [6] are typical in that they try to measure design quality by
means of, for example, cohesion, coupling and inheritance-related
metrics. The e�ort made to measure these design aspects is typi-
cally low. Empirical studies indicate that some of these metrics (e.g.,
inheritance depth, number of methods, coupling between objects)
are useful for measuring design quality in the sense that there is a
correlation between the metrics and external quality (usually bugs)
[2, 31]. Nevertheless, metric-based approaches fail to support de-
velopers, since it is di�cult to grasp the semantic relation between
a metric and the source code that has to be changed in order to
improve the metric.

Another set of approaches tries to identify so-called design smells
or code smells [9, 15, 19, 23]. The work on design smells is in�uenced
by the design heuristics of Riel [27] as well as the research on
refactoring and anti-patterns by Fowler et al. [10] and Brown et al.
[4], respectively. These design smells, for instance, data clumps or
feature envy [10], semantically express a design �aw and make it
tangible for software developers. From our point of view, this is

an improvement over metric-based approaches. However, typical
measurement approaches (e.g., [19, 32]) for design smells are also
metric-based, with the di�erence that they do not rely on a single
metric but on a combination thereof. Thus, there still remains the
problem of properly �nding the causes in the source code.

Ganesh et al. [11] collect and categorise design smells using a
pattern language. They focus on semantically grasping the design
problem without providing any hints of how to measure design
smells [12]. In addition, this group published a design assessment
approach called MIDAS [28], which refers to the skills and knowl-
edge of experts who manually assess adherence to design princi-
ples. By using this more abstract view of design quality, a better
understanding of issues and problem sources can be achieved. To
standardise these manual investigations, a model for design quality
should be used that is currently not available [28]. Our idea of de-
sign best practices (see Plösch et al. [25] and the discussion in the
next section) follows the approach of Ganesh et al. [11], providing
68 measures for capturing object-oriented design quality issues.

The second area of related work covers the prioritization of de-
sign improvements. In the recent past, this topic has been addressed
by work around measuring the technical debt of software systems.
Technical debt is an abstraction of the term design debt or code debt.
The debt metaphor is used to communicate the software quality
issues contained in a product [22]. Accordingly, it tries to express
the required e�ort to clean up source code or software design in an
attempt to limit risks to future development and maintenance. This
is why technical debt approaches can be seen as a prioritization
technique for quality issues that can guide targeted improvements.

As mentioned above, design smells are used to expose symp-
toms at the design level. For identifying these symptoms, detection
strategies have been proposed by Marinescu [19]. This idea has
been elaborated by considering the in�uence of design smells on
design �aws [20]. To determine the individual in�uence of a de-
sign smell, seven senior software designers were interviewed. The
derived in�uence levels are then used to direct improvement de-
cisions towards those design smells with the highest impact on
design quality.

A similar idea was adopted by another research group [34]. They
proposed an approach that relies not on an external view of design
smells but rather calculates the cost and impact of design debt. The
calculation of the cost dimension is based on standard metrics [34].
To determine the impact of design debt on quality, the two aspects
of correctness and maintainability are taken into consideration and
rest upon the likelihood of defects and changes [34, 35]. Finally,
the identi�ed design smells are ranked according to the cost and
impact dimensions and visualised in a cost-bene�t matrix.

SQALE (Software Quality Assessment based on Lifecycle Ex-
pectations) is another model for calculating technical debt [18]. It
de�nes speci�cations for calculating so-called remediation indices,
that is the estimated remediation e�ort required to �x a violation of
a rule. The remediation indices can be aggregated and translated to
"�nancial debt", a term used by SQALE that corresponds to remedi-
ation costs. SQALE calculates the required e�ort to �x all violations
for each rule. The resulting technical debt is given in person days.

Improving Object-Oriented Design �ality IWSM-Mensura, October 2017, Gothenburg, Sweden

3 APPROACH TO GUIDE DESIGN
IMPROVEMENTS

Modern software development aims to develop high-quality prod-
ucts within limited time and budget constraints; this work narrows
software quality down to design quality for object-oriented soft-
ware. Thus, investing the proper amount of e�ort to refactor the
most important design �aws is required to stay within the de�ned
constraints and to pay o� design debt. Notwithstanding this, it
is necessary to identify those design �aws that have the highest
impact on quality. The current quality state of the project must
be known, because it is typically not possible to �x all identi�ed
design �aws. Given this information regarding those �ndings with
the highest impact, we can then systematically derive which im-
provements are the most e�cient.

For this purpose, we introduce the concept of a portfolio matrix
(see Section 3.3), which incorporates two dimensions to quantify
and prioritize design improvements. The �rst dimension is the im-
portance of design best practices, on the vertical axis while, the
second dimension represents quantiles determined from a bench-
mark approach, on the horizontal axis. The latter puts design best
practices relative to their values in a benchmark base and can there-
fore re�ect the quality state of a project. To explain the approach
in more detail, the two dimensions are described next, before the
portfolio matrix is explained at the end.

3.1 Design Best Practices
As mentioned in Section 2, the community is missing a reference
model for design quality [28]. In the long run, our work tries to
close this gap, using a di�erent approach than that of related work
in the past. In contrast to measure metrics or design smells to ex-
press the design of software, we are interested in understanding
the compliance of source code with (�ne-grained) design principles
such as information hiding, the single responsibility principle or don’t
repeat yourself [24]. Therefore, it is important to facilitate the under-
standing of design de�ciencies at a level more abstract than design
smells but not as coarse as that suggested by Ganesh et al. [12],
who cluster design problems based on abstraction, encapsulation
or modularisation.

Figure 1: Design principle and related design best practices

A list of 32 design principles was systematically identi�ed, with
important ones determined based on a survey [24]. Guided by this
set of principles, a top-down approach was applied to identify and
specify design best practices related to the design principles. An
example of a design principle and its related design best practices is
illustrated in Figure 1. In this example, the information hiding prin-
ciple is a�ected (threatened) by, for instance, classes that provide
public �elds, methods that return mutable collections or methods
that could declare an interface instead of a concrete class as the
return type. While the example is just an abstract view of mea-
suring design principles by means of design best practices, a more
elaborate discussion is provided in Plösch et al. [24], which explains
the underlying meta-model and its applicability.

As another major di�erence to Ganesh et al., we did not stop at
the speci�cation level but also implemented the static code analysis
tool MUSE, which analyses Java, C# or C++ source code and �nds
violations of these design best practices directly from the source
code [25]. As already mentioned above, this article concentrates on
the Java part of MUSE, comprising 49 design best practices. The
resulting MUSE measurement represents a list of violations that
can be uploaded to SonarQube1. In SonarQube, the �ndings are
linked to the source �les, where developers can start investigating
identi�ed issues.

MUSE can be applied to manage design improvements for a soft-
ware product. However, software developers and designers should
focus on the most important and critical violations to e�ciently
invest their e�ort. In order to understand the importance of design
best practices, we conducted another online survey [5]. In total, 214
people participated in this survey, resulting in an average of 138
opinions for each practice. The importance scale the participants
used to categorize the 49 design best practices ranged from very
low to very important. Table 1 depicts all 49 design best practices,
sorted by their perceived importance for design quality but without
an assessment in regard to a particular design principle; latter will
be addressed by future work.

Additionally, Table 1 shows an importance range for each design
best practices, derived from the average and standard deviation
of all opinions for each best practice. The only rule that does not
provide a range is AvoidDuplicates, because there is common agree-
ment on its very high importance. For all the other design best
practices, the range provides some degree of freedom when using
the rules, for instance, to assess software design. This �exibility
is needed since many design decisions are context-depended, as
survey participants mentioned. Altogether, the range de�nes an
appropriate space to adjust the importance of design best practices
for a particular project, but it is not recommended to go beyond
the upper or lower boundaries.

3.2 Benchmarking
Obtaining measurement values by executing, for instance, our mea-
suring tool MUSE, is not su�cient to make improvement decisions.
For this aim, it is necessary to know whether the number of viola-
tions is critical for a project or if it is instead within an acceptable
range. To identify this criticality regarding the number of violations,
we rely on benchmarking.

1https://www.sonarqube.org/

IWSM-Mensura, October 2017, Gothenburg, Sweden J. Bräuer et al.

Table 1: Design best practices ordered by importance

Id Rule Name Im
po

rt
an

ce

R
an

ge

R1 AvoidDuplicates vh vh
R2 AvoidUsingSubtypesInSupertypes vh h - vh
R3 AvoidPackageCycles vh h - vh
R4 AvoidCommandsInQueryMethods vh h - vh
R5 AvoidPublicFields vh h - vh
R6 DocumentInterfaces h m - vh
R7 AvoidLongParameterLists h h - vh
R8 UseInterfacesIfPossible h m - vh
R9 AvoidStronglyCoupledPackages h m - vh
R10 AvoidNonCohesiveImplementations h m - vh
R11 AvoidUnusedClasses h m - vh
R12 DontReturnUninvolvedDataFromCommands h m - vh
R13 AvoidNonCohesivePackages h m - vh
R14 DocumentPublicMethods h m - vh
R15 UseCompositionNotInheritance h m - vh
R16 DocumentPublicClasses h m - vh
R17 AvoidPublicStaticFields h m - vh
R18 AvoidDiamondInheritanceStructuresInterfaces h m - vh
R19 AvoidLongMethods h m - vh
R20 AvoidSimilarNamesForDi�erentDesignElements h m - vh
R21 AvoidUnusedAbstractions h m - vh
R22 CheckUnsuitableFunctionalityOfClass h m - vh
R23 AvoidSimilarAbstractions h m - vh
R24 DocumentPackages h l - vh
R25 UseInterfacesAsReturnType h l - vh
R26 AvoidUncheckedParametersOfSetters h h - vh
R27 AvoidSimilarNamesForSameDesignElements m m - h
R28 CheckObjectInstantiationsByName m l - h
R29 AvoidRepetitionOfPackageNamesOnAPath m l - h
R30 ProvideInterfaceForClass m l - h
R31 AvoidRuntimeTypeIdenti�cation m l - h
R32 AvoidDirectObjectInstantiations m l - h
R33 CheckUnusedSupertypes m l - h
R34 AbstractPackagesShouldNotDependOnOtherPkg m l - h
R35 DontReturnMutableCollectionsOrArrays m l - h
R36 AvoidMassiveCommentsInCode m l - h
R37 AvoidReturningDataFromCommands m l - h
R38 UseAbstractions m vl - h
R39 CheckUsageOfNonFullyQuali�edPackageNames l l - m
R40 AvoidManySetter l vl - m
R41 AvoidHighNumberOfSubpackages l vl - m
R42 AvoidConcretePackage l vl - m
R43 AvoidSettersForHeavilyUsedFields l vl - m
R44 AvoidAbstractClassesWithOneExtension l vl - m
R45 DontInstantiateImplementationsInClients l vl - m
R46 AvoidManyGetters l vl - m
R47 AvoidProtectedFields l vl - m
R48 CheckDegradedPackageStructure l vl - m
R49 AvoidManyTinyMethods l vl - m

Figure 2: Quartile-based value distribution for one design
best practice

Benchmarking is a well-established concept in many business ar-
eas, where (similar) objects such as products, services, processes or
organizations are checked against each other for a speci�c purpose
[7]. The purpose can be, for example, the evaluation of a relative
object value or derivation of suggestions for improvements.

Based on the work of Simon et al. [30] on software quality bench-
marking, we developed an automatic assessment approach for soft-
ware quality that relies on the benchmarking concept [13, 22]. For
assessing the design quality of software projects, we built up a
benchmark database that contains the quality data of all reference
projects. In this context, it is adequate to store the number of rule vi-
olations for each design best practice and for each reference project.
In addition, we store values of various size metrics for each project
as needed for normalization; examples of size metrics are lines of
code, number of methods or number of classes.

Normalization of a measurement result makes raw results com-
parable with other projects. As an example, in a project with several
thousand functions (e.g., 2,000), 20 undocumented functions might
be a negligible de�cit. But in a project with only 50 functions, having
20 undocumented function might be wholly unacceptable. In this
way, the normalization operation eliminates the in�uence of the
size of the project on the measurement results. After having applied
normalization strategies for each measure, the normalized data are
comparable with data from other projects (e.g., 1% undocumented
functions in project A versus 40% in project B).

Based on the benchmark database, which can be used for sev-
eral assessments, a benchmark suite needs to be generated in a
second step. A benchmark suite is tailored to a speci�c application
of benchmarking, comprising only those projects that are selected
as reference projects. For instance, a benchmark suite might be lim-
ited to embedded systems projects written in the C programming
language. To create the benchmark suite, we calculate a value distri-
bution for each measure on the basis of their normalized values. As
a result, these value distributions re�ect commonly used statistical
�gures such as quartiles, quintiles, deciles or percentiles.

A quartile-based distribution, as demonstrated in Figure 2, di-
vides the values into four areas Q1 to Q4, where Q1 and Q4 are
delimitated by the minimum and maximum value of the best and
worst project in the benchmark suite. If an investigated project
is better than the benchmark minimum, it falls in the additional
area Q0. Correspondingly, this applies to the maximum value indi-
cated by Q5. All in all, the numbers of rules assigned to particular
quartile express the current quality state of a project relative to the
benchmark suite.

Improving Object-Oriented Design �ality IWSM-Mensura, October 2017, Gothenburg, Sweden

3.3 Improvement Portfolio Matrix
The idea of using portfolio matrices for strategic product decisions
is quite old, going back to the two-by-two matrix proposed by the
Boston Consulting Group (BCG) and McKinsey. The idea of using
portfolio matrices need not be restricted to product decisions but
can also be used for decisions related to software, as shown by
Zazworka et al. [34].

Subdividing a two-dimensional matrix to four areas is a common
approach used in strategic product placement, as already mentioned.
The Boston Consulting Group matrix, for instance, is a known tool
to place a product in one of four quarters depending on its relative
market share and potential market growth [14]. Accordingly, man-
agers can make better investment decisions based on the quarter
the product is in. McKinsey, in cooperation with General Electrics,
proposed the GE/McKinsey matrix, which provides a more elab-
orate view on a two-dimensional matrix. The scales on the two
dimensions are more selective in order to allow better di�erenti-
ated planning. Additionally, the GE/McKinsey matrix divides the
matrix not into four quarters but rather to action �elds with a size
depending on the application context. The advantage of this port-
folio approach is that it allows de�ning and executing standard
improvement decisions for each action �eld.

To de�ne our design improvement portfolio, we followed the
ideas behind the GE/McKinsey matrix for two reasons. First, our
dimensions provide a broader spectrum of distinguishing charac-
teristics, that is ranging from very low to very high on the vertical
axis and from Q0 to Q5 on the horizontal axis. Hence, our matrix
should provide all possible options. Second, dividing the �eld in
four equivalent quarters would limit the variety of the dimensions.
In other words, we would lose the details needed to provide more
targeted design improvement recommendations.

Based on our investigations regarding the importance and de-
rived quartile of each practice, we suggest the following general
investment strategies.

Restricted investment area: A design best practice in the bot-
tom left corner should deserve little attention, as in this case the
project team largely follows the design best practices and performs
better than 50% of the projects in the benchmark suite. Moreover,
addressing violations of this design best practice does not improve

Figure 3: Design improvement matrix

overall design quality to a large extent. Consequently, no or little
e�ort should be invested.

Selective investment area I: A design best practice in the top
left corner deserves some attention. The project team is already
concerned about the practice, so additional e�ort is hardly required.
We recommended investing e�ort in a selective way.

Selective investment area II: A design best practice in the
bottom right corner deserves some attention, possible more than
the design best practices in the selective investment area I. Although
the a�ected design best practices are not that important for the
overall design, the project performance is weak, that is similar to
the worst projects. We recommend investing e�ort selectively.

Immediate investment area: A design best practice in the top
right corner deserves the most attention. In fact, following such a
design best practice is considered to be important for the overall
design quality, as the project team has not adhered to important
design best practices (at least compared to reference benchmark
base). Besides, the project is worse than 50% of the projects in the
benchmark suite. As a result, e�ort must be invested into addressing
these violations.

As depicted in Figure 3, Q0 and Q1 have the same proportion of
the investment area. We decided not to di�erentiate between these
quartiles because Q0 contains just those design best practices for
which the project is performing better than its best counterpart in
the benchmark suite. While it might be interesting for a project
team to see where it is performing very well, we would not provide
a di�erentiated improvement recommendation compared to Q1.
Equally, the same applies for the opposite side with Q4 and Q5.

While the above high-level recommendations provide �rst hints
for driving targeted improvements, for the most critical area, rep-
resented by the top right corner, more speci�c guidance can be
given. This speci�cation considers Q5 to be equal to Q4. Design
best practices that are in Q4/vh are those design �aws that must be
addressed �rst. A high-quality product cannot ignore design �aws
in this �eld. Concentrating further improvements on these design
best practices achieves signi�cant quality enhancements. The next
wave of improvement must be invested in Q3/vh and Q4/h, since
they are still critical and not followed well. Finally, the remaining
time and budget should �ow into design best practices in Q2/vh,
Q3/h and Q4/m. This concludes that these design best practices
move from the recommendation space of immediate to selective
improvements.

By applying the improvement strategy discussed above, the
project team commits to the default importance settings. Thus,
a project team would �rst focus on design best practices that are
considered to be (very) important according to the survey. However,
many project teams have an ’it depends’-view of best practices, so
they need a way to adjust the default settings depending on context.
This �exibility is provided by the importance range for each design
best practice. Accordingly, the team can vertically move design best
practices within the matrix by up- or downgrading them. Changing
the importance of a design best practice should not be a comfort-
able, ad-hoc decision that moves design best practices, for example,
from the immediate investment area to the selective investment
area. Instead, it must be considered from a strategic viewpoint and
always must be aligned with business and product goals.

IWSM-Mensura, October 2017, Gothenburg, Sweden J. Bräuer et al.

Given this option to adjust the importance within de�ned bound-
aries, our portfolio matrix provides another lever for handling de-
sign best practices, especially, border cases in Q2/h, Q3/m and Q4/l
that are close to the immediate investment area. Consequently,
a team should reconsider the practices in these �elds to identify
candidates that are worth following. By upgrading an interesting
practice, the team commits to invest improvement e�ort since it
moves into the top right corner.

4 FEASIBILITY STUDY
In this feasibility study, three projects are assessed against a bench-
mark suite containing 50 reference projects to present (1) the e�ects
of di�erent levels of importance for design best practices on overall
quality evaluation and (2) to demonstrate our proposed improve-
ment matrix approach. The entire set of reference projects is shown
in the Appendix. The selection process for projects in the bench-
mark base focused on open-source Java projects with a high number
of downloads and therefore seem to be used by a larger community.
Additionally, we only selected projects that are in development,
meaning that their last release date was within the last two years.
This ensures that they use a more current Java version and pro-
gramming techniques. Another selection criterion was project size,
ranging from small (10 KLLOC) over medium (~100 KLLOC) to
large (>500 KLLOC). In total, the logical lines of code of all projects
amount to 4.55 MLLOC.

After downloading the source code, external libraries needed
by the reference projects were collected. This step was required
because MUSE guarantees a higher measurement accuracy when
all referenced libraries are available that provide additional details
on type declarations and their usage. Typically, just the source code
of the reference projects is stored on the public repository platform
Github, while build technologies like Maven or Gradle are applied to
determine the needed dependencies. Consequently, libraries are not
stored along with the source code but rather acquired dynamically.
In order to collect all required libraries for a project, we used our
tool LibLoader, which automatically downloads them.

Afterwards, MUSE was executed on all 50 reference projects.
This measurement returned the number of rule violations and a
normalization value for each design best practice and for each
project. While normalization is often carried out on the basis of
LLOC, our experiments showed that this simplistic approach dis-
torts the results. Choosing a normalization factor that better �ts
with design best practice leads to more realistic values. We there-
fore de�ned individual kinds of normalization for each design best
practice. After calculating the normalized �ndings by dividing the
number of rule violations by the normalization value, these �ndings
were stored in the benchmark suite, representing the raw data for
calculating the quartile-based distribution discussed in Section 3.2.

Before deriving the quartiles, an outlier detection approach was
conducted in order to remove measuring results that distort the
normal distribution. Speci�cally, the outlier labeling technique pro-
posed by Hoaglin and Iglewicz [16] was applied. We followed the
recommendation of using g’=2.2 for 50 < n < 100 [16]. As a result, we
identi�ed abnormal design rule violations on both extrema. Finally,
the cleaned-up data were used to derive the quartile boundaries for
each design best practice.

Table 2: Study projects

Version Release Date LLOC
Elasticsearch 5.3.0 2017-03-28 294,948
Vaadin 7.7.8 2017-03-27 144,254
Apache ZooKeeper 3.5.3-rc0 2017-03-28 34,112

The three investigated projects in this study were the open-
source projects Apache ZooKeeper, Elasticsearch and Vaadin, re-
viewed in Table 2. They were selected mainly based on their project
size, application domain and development state. While ZooKeeper
is medium and Vaadin is large compared to the benchmark suite,
Elasticsearch would be the third-largest project in the data base.
Moreover, all three projects are widely used and developed by a
large community; for example, Elasticsearch has 804 contributors
on Github.

After selecting the projects for study, the quality investigation
could proceed. Therefore, we followed the steps proposed by Klï£¡s
et. al. [17], who discuss the usage scenarios of quality models. The
�rst step focused on measuring design quality with MUSE. Based on
measurement results, the design quality of each of the three projects
was assessed using the derived quartile distributions. Lastly, we
selected one project to discuss the applicability of the improvement
portfolio matrix.

4.1 Design Measurement
The MUSE measurements for all three projects are shown in Ta-
ble 3. There, the 49 design best practices are referenced by their
identi�cation numbers de�ned in Table 1. The �rst column of each
project depicts the absolute number of violations. In other words,
MUSE returned 141 violations of the design best practice AvoidDu-
plicates for ZooKepper, as shown in the �rst row, which contains
the identi�cation number R1. In addition to the absolute number of
violations, the total number of entities checked by each design rule
is provided in the second column.

Based on the total number of entities, the numbers of violations
are normalized. The importance of normalization is brie�y men-
tioned in Section 3.2. We also recognized that MUSE needed to be
enhanced in this regard because the prior version used size metrics
for normalization that were too coarse-grained. Formerly, MUSE
returned, for instance, the number of methods in the project to
normalize the design best practice AvoidCommandsInQueryMethods
(R4) and AvoidLongParameterLists (R7). However, this approach was
unfair because R4 works just on query methods that represent a
considerably lower number than to the total number of methods for
a project. Hence, the MUSE rules were enhanced by returning the
exact number of entities in the project that are veri�ed. The relative
number of violations for each rule was calculated by dividing the
absolute number by the number of entities. This relative value was
then checked against the benchmark suite, returning a quartile for
each rule and each project.

4.2 Design Assessment
In the upper part of Table 4, a summary of the derived quartile
distribution for all three projects is shown. According to this table,

Improving Object-Oriented Design �ality IWSM-Mensura, October 2017, Gothenburg, Sweden

Table 3: Design measurement results

ZooKeeper Elasticsearch Vaadin
Id �ndings entities �ndings entities �ndings entities

R1 141 3,411 1,324 29,494 301 14,425
R2 4 33 85 464 8 222
R3 39 34,112 4,290 294,948 170 144,254
R4 7 623 116 4,886 77 3,285
R5 41 982 83 8,783 539 3,951
R6 81 278 499 1,783 247 1,636
R7 11 2,762 240 31,135 6 14,078
R8 146 1,637 9,853 39,026 905 9,344
R9 3 21 83 349 12 171
R10 54 276 528 2,751 290 1,125
R11 19 276 210 2,751 157 1,125
R12 8 424 116 3,161 15 2,630
R13 4 21 26 349 16 171
R14 673 1,204 7,721 13,565 1,683 5,773
R15 3 73 36 432 66 431
R16 106 313 1,628 2,950 364 1,181
R17 0 44 40 101 21 106
R18 4 78 124 1,344 254 734
R19 44 2,762 169 31,135 157 14,078
R20 4 567 18 5,857 115 2,583
R21 10 74 86 753 115 588
R22 4 239 69 2,500 35 927
R23 0 232 42 2,784 0 1,137
R24 0 0 0 0 0 0
R25 38 395 3690 12,509 315 2,703
R26 28 32 255 370 439 853
R27 8 567 175 5,857 147 2,583
R28 5 2,073 4 18,417 4 4,365
R29 0 21 1 349 2 171
R30 59 313 431 2,950 75 1,181
R31 109 34,112 1052 294,948 729 144,254
R32 31 276 524 2,751 87 1,125
R33 5 199 294 2,655 69 865
R34 2 21 24 349 13 171
R35 24 127 547 1,300 74 354
R36 7 2,762 134 31,135 148 14,078
R37 66 424 1,684 3,161 206 2,630
R38 10 21 211 349 91 171
R39 0 21 21 349 7 171
R40 1 36 20 340 46 257
R41 0 21 13 349 4 171
R42 4 21 172 349 47 171
R43 5 316 71 2,724 59 2,243
R44 2 19 46 357 10 130
R45 141 553 3962 7,997 395 1,238
R46 5 36 56 340 55 257
R47 125 982 220 8,783 190 3,951
R48 2 21 16 349 11 171
R49 10 276 162 2,751 30 1,125

Total 2,093 - 41,171 - 8,806 -

Table 4: Design assessment results

Quartile ZooKeeper Elasticsearch Vaadin
Q-0 6 1 2
Q-1 6 3 11
Q-2 15 9 13
Q-3 13 17 8
Q-4 9 18 13
Q-5 0 1 2

Q-Index 448 325 421
(53.65%) (38.92%) (50.42%)

Q-I. soft 315 229 302
Q-I. strict 567 441 527

ZooKeeper outperforms the entire benchmark suite in six cases
as indicated by Q0. In other words, ZooKeeper has fewer or the
same number of violations for six design best practices (design
rules) compared to the best project in the benchmark suite. For
further six design best practices, this project is in Q1 and within
the top quarter. The majority of design best practices fall in Q2 and
Q3, with 15 and 13 design best practices, respectively. Q4 has nine
design rules, while no design rule returned more �ndings than the
worst project in the benchmark suite. This was not the case for
Elasticsearch; because it has too many package cycle so that the
rule AvoidPackageCycles (R3) fell in Q5.

From a general point of view, Elasticsearch has more design debt
than the other two projects because 36 of 49 design rules fell in
quartiles higher or equal to Q3. In contrast, ZooKeeper has 22 and
Vaadin has 23 rules in quartiles Q3, Q4 or Q5. To get a more discrete
assessment regarding the measured design quality, a quality index
was calculated for each project.

To calculate this quality index, the design best practices were
weighted according to their importance in Table 1 and multiplied
by their achieved quantile. For example, AvoidDuplicates (R1) has
an importance of very high, representing 5 points; vice versa, very
low importance counts for 1 point. In ZooKeeper, this design best
practice achieves Q3, so that the importance is multiplied by value 2;
Q1 represents a multiplier of 4, Q2 a multiplier of 3, Q3 a multiplier
of 2 and Q4 a multiplier of 1. As a result, AvoidDuplicates provides 10
points to the quality index of ZooKeeper. Lastly, adding up all design
rules returns a quality index of 448 points for the �rst project. This
value is then put in relation to the maximum points to determine
the relative quality index shown in brackets.

Given this purely quantitative quality assessment, a comparison
of the three projects is valid because they are all measured against
the same comparison base. Thus, ZooKeeper and Vaadin achieve
almost the same quality index, while Elasticsearch is performing
worse than the others. In fact, there remains a gap of 96 points
(11.5%) between Elasticsearch and Vaadin, the second-best project.
Generally, this is a fair comparison because all three projects are
relatively assessed against the same benchmark suite and their
quality indices are determined in the same way.

As mentioned in Section 3.1, each design best practice provides
an importance range. Developers and design analysts can take

IWSM-Mensura, October 2017, Gothenburg, Sweden J. Bräuer et al.

advantage of this range to up- or downgrade design rules depending
on their perception. When upgrading all design rules to the highest
possible importance value, a project would commit to a very strict
assessment. This strict assessment raises the quality gate to a high
level, forcing the developers to very strictly follow design best
practices. A very soft assessment would downgrade all design rules,
resulting in few design best practices at a high importance level.

To show the di�erence between the two extrema a project might
theoretically acquire, we calculated strict and soft quality indices
for all three projects. As depicted in Table 4, there is actually a
wide space between the two assessments. ZooKeeper has a soft
quality index (Q-I. soft) of 315 points and a strict one (Q-I. strict) of
567 points. Focusing on the 567 points, it is obvious that the index
increased to this value since intensifying the quality gate raises
the importance level of 21 design rules to very high. Consequently,
there are now 26 rules that all contribute 5 points to the quality
index.

With a set of 26 design rules in the very high area, developers are
left in the dark about where to start investing improvement e�ort.
In other words, changing the design and �xing issues by randomly
selecting rule violations may cause over-engineered parts on the
one hand, while design �aws are ignored on the other hand. Hence,
it is required to guide developers in selecting the design rules that
are worth investing resources. For this purpose, our improvement
matrix provides an appropriate tool, since it maps the rules in
the very high area to the achieved quality state expressed by the
measured quartile.

4.3 Design Improvement
This part discusses the application of the portfolio matrix for Apache
ZooKeeper. Although the previous section motivates the utilization
of the matrix to investigate the 26 very important design best prac-
tices of a strict assessment, this discussion starts with the default
setting shown in Table 1.

To determine the improvement matrix for ZooKeeper, the quan-
tile assessment is combined with the importance scale. Subsequently,
the distribution of design best practices can be seen in Figure 4.
It is evident from the result that 15 design best practices are in
the immediate investment area, 10 are in the restricted investment
area, and 24 are in the selective investment area. This already helps
reduce the entire set of 49 design best practices to a subset that is

Figure 4: Default improvement matrix for ZooKeeper

worth for improvements. In other words, the rest can be ignored in
the �rst place.

As discussed in Section 3.3, the most critical �eld is Q4/vh. In
the case of ZooKeeper, only AvoidPublicFields (R5) is in this �eld.
The reason is that the ratio of 41 violations in 982 classes is too
high compared to the benchmark suite. In more detail, the relative
value of violations for AvoidPublicFields (R5) is 0.042, while Q3
requires a value of 0.029. For ZooKeeper, this means there can be a
maximum of 28 violations to achieve Q3. Consequently, the team
must eliminate 13 design rule violations or 31% of the 41.

The next two �elds that warrant further improvement are Q3/vh
and Q4/h. According to Figure 4 and as described in Table 5, eight
design best practices fall in these two �elds. Since we do not di�er-
entiate between Q3/vh and Q4/h, further improvement could come
from any of the eight rules. To help select a practice, Table 5 con-
tains the limits to the next lower quartile. Given this information,
it is possible to derive the absolute number of violations that must
be addressed. For instance, when removing nine code duplicates,
AvoidDuplicates would move from Q3 to Q2.

From a pragmatic point of view, the next improvement decision
could rest upon the lowest number of violations that need to be
�xed. Based on Table 5, AvoidNonCohesivePackages is the practice
that should be followed, because the cohesiveness of just two pack-
ages must be enhanced. However, it is likely that changing the
package structure of these packages consumes more resources than
documenting nine public classes, as indicated by DocumentPublic-
Classes (R16). Nevertheless, this is just an estimate; we do not know
the e�ort to �x individual violations of design best practice. Further
work will concentrate on investigating this aspect.

The six remaining practices in the immediate investment area
are AvoidPackageCyles in Q2/vh and AvoidStronglyCoupledPack-
ages, UseInterfacesIfPossible, AvoidUnusedAbstractions, DocumentIn-
terfaces, and DocumentPublicMethods in Q3/h, representing three
problem areas. First, two of the six rules indicate that ZooKeeper
developers have issues in regard to their package structure, since
they build package cycles and the packages are too strongly cou-
pled. Second, the way of dealing with abstractions causes some
violations. Hence, instead of using the concrete class for type de�-
nitions or return type, an interface – implemented by the class –
could be applied. Moreover, ZooKeeper de�nes abstract classes or
interfaces that are never used. If they are required for providing
extension points, they should be excluded from the MUSE analysis.
Third, design de�cits are found in the missing documentation of
interfaces and public methods.

Following our approach and investing at least in the immediate
investment area with the goal of changing the quality level for each
a�ected design best practice by one quality level (i.e., from Q4 to Q3,
from Q3 to Q2 and from Q2 to Q1), resources are needed to �x 1,335
violations of the 15 distinct design best practices. Compared to the
overall number of violations (2,093) for ZooKeeper, our approach
identi�es the most relevant problems in the source code. Applying
technical debt calculation (see, e.g., the SQALE approach [18].)
would even allow us to monetarize and thereby even better plan
the needed resources.

The chosen level of importance obviously has major impact on
the results of evaluation, as already shown in Section 4.2. When

Improving Object-Oriented Design �ality IWSM-Mensura, October 2017, Gothenburg, Sweden

Table 5: Details about design rule violations in Q3/vh and Q4/h

absolute No.
of Violations

No. of
Entities

relative No.
of Violations

Quartile Limits No. of Fixes

Q3/vh to Q2/vh
(R1) AvoidDuplicates 141 3411 0.041 0.039 132 9 (6%)
(R2) AvoidUsingSubtypesInSupertypes 4 33 0.041 0.058 1 3 (75%)
Q4/h to Q3/h
(R16) DocumentPublicClasses 106 313 0.339 0.310 97 9 (8%)
(R19) AvoidLongMethods 44 2762 0.016 0.014 38 6 (14%)
(R26) AvoidUncheckedParametersOfSetters 28 32 0.875 0.732 23 5 (18%)
(R7) AvoidLongParameterLists 11 2762 0.004 0.003 7 4 (36%)
(R13) AvoidNonCohesivePackages 4 21 0.190 0.132 2 2 (50%)
(R20) AvoidSimilarNamesForDi�erentDesignE. 4 567 0.007 0.000 0 4 (100%)

Figure 5: Strict improvement matrix for ZooKeeper

upgrading all design rules to the highest possible importance value,
a project would commit to a very strict assessment with consider-
able implications for the improvement program. For ZooKeeper,
this would result in the improvement matrix depicted in Figure 5,
which indicates more improvement e�ort compared to Figure 4.
Investing at least in the immediate investment area with the goal of
changing the quality level for each a�ected design best practice by
one quality level would require resources to �x 1,632 violations of
26 distinct design best practices. Compared to the overall number
of violations (2,093) for this project, our approach focuses on the
most relevant problems in the source code. Nevertheless, this is 22%
more than the standard median importance discussed before.

The feasibility study clearly shows that the importance level has
large impact on improvement decisions and should therefore not be
taken lightly. It should always be aligned with the strategic quality
goals of the product or project.

5 LIMITATIONS
In any experimental study, there are factors that can in�uence
the �ndings and represent threats to validity. Threats to external
validity concern the ability to generalise the results [33]. In this
regard, restricting the programming language of the projects to
Java represents an external threat to validity. While our general

idea of using a portfolio matrix to guide design improvements is
not a�ected, the importance of individual design best practices
di�er among object-oriented programming languages. Thus, Table
1 cannot be applied to drive improvements for C++ or C# projects
since the ranges are slightly di�erent [5].

Threats to internal validity concern any confounding variables
that could have in�uenced the results of our study [33]. In this
work, our measuring tool might represent a confounding variable.
MUSE o�ers the possibility to adjust threshold values or to ex-
clude source code parts from being analyzed. This is necessary to
perfectly integrate MUSE in a continuous quality improvement
process depending on project requirements or strategic projects
goals, which de�ne the adjustment of the MUSE levers in prac-
tice. However, for this experiment we decided to leave the default
settings for the analysis of the three investigation objects and the
reference projects in the benchmark base. This decision ensures
equal measurement conditions for all projects.

Another threat that results from the measurement is the likeli-
hood of wrongly identi�ed violations, which should be classi�ed
as false-positives. When designing software, it sometimes occurs
that a team intentionally violates a design best practice in order to
simplify, for instance, maintenance tasks of a designated compo-
nent. Without excluding parts or customizing our design rules, a
measurement can contain violations even though the design deci-
sion may have been deliberately chosen. To address this threat, the
53 project teams must individually classify wrong violations. Since
this task would be very time consuming and because all projects
are exposed to the same likelihood of containing false-positives, we
decided to accept this threat.

In addition, the selection of the reference project for the bench-
mark base leads to another internal threat. To control this issue,
we selected Java projects of di�erent sizes and with a last o�cial
release date after January 2015. Based on these criteria, we created
a benchmark base of 50 projects that amount to 4.55 MLLOC. We
assume that this is a fair basis for comparison because this compre-
hensive analysis re�ects common understanding and application
of the design best practices. Besides, we also conducted outlier de-
tection to eliminate measurements that are not within a normal
distribution and may thereby distort the results.

IWSM-Mensura, October 2017, Gothenburg, Sweden J. Bräuer et al.

6 CONCLUSION AND FUTUREWORK
From a general point of view, this paper contributes to the research
area of improving software quality, in particular object-oriented
design quality. Design �aws that evolved due to time pressure and
quick �xes rather than long-term solutions increase the complex-
ity of further product development. Known as design debt, this
metaphor expresses the e�ort required to clean up the design in an
attempt to limit development and maintenance risks. Studies of de-
sign debt have shown that the detection of design �aws, which are
valuable to developers, has been well addressed [29]. Nevertheless,
making the most e�cient improvement decisions for paying o�
design debt with limited resources is still an open area of research.

Our improvement portfolio matrix can be seen as a tool that
provides exactly that support for making proper decisions about de-
sign improvement. It therefore combines the importance of design
best practice with benchmark values and can derive an overview
of design �aws for a particular project. This already helps develop-
ers in focusing on the most important issues �rst. In addition, the
portfolio matrix allows �exibility by allowing up- or downgrading
practices depending on the project context. This should not be a
comfortable, ad-hoc decision made to bypass painful changes but
rather must be considered from a strategic point of view, always
aligned with business and product goals.

From a practice-oriented view, the portfolio matrix represents the
missing stone after design measurement. While developers may be
not as interested in an overview of design �aws, they are concerned
about refactoring the matching problems in the source code. This
process can now be perfectly implemented by �rst identifying
design rule violations with MUSE, then publishing the �ndings on
SonarQube, and �nally mapping the measurement to the portfolio
matrix. As a result, it is possible to begin an investigation from the
portfolio matrix and the dig down to the source code.

As brie�y mentioned in Section 4.3, future work will concen-
trate on understanding the e�ort required to refactor the di�erent
kinds of design best practice violations. This should reveal a clearer
picture of the required investment e�ort and is an additional pa-
rameter to drive decisions. Besides, an estimation of e�ort in terms
of person days would be a lever to monetarize design debt for
decision-makers.

A validation of the approach in cooperation with one of the
three studied projects is another avenue for future work. In fact, we
are interested in which importance values the collaborating team
would select for the project when using the framework we proposed
in this work. Based on the resulting portfolio matrix, a statement
and general perception of the recommended improvements would
underline or reject the suitability of our approach. Moreover, our
approach now compares a project against a benchmark suite and
derives a quality assessment. However, it is not obvious whether this
relative quality assessment re�ects the real quality of the product.
Therefore, the external views of independent experts should be
taken into consideration.

Finally, aggregating design best practices to a higher-level design
problem is on our research agenda. Indeed, in previous work we
proposed a design quality model for measuring and assessing de-
sign principles such as information hiding, the single responsibility

principle or don’t repeat yourself [24]. A current research study fur-
ther investigates this direction so that we can better understand the
relation between design best practices and design principles. Based
on these results, we plan to use the portfolio matrix to provide
improvements not on the �ne-grained level of practices but rather
on the coarse-grained level of design principles. In other words, we
would want to show a project team that the product performs well
in, for example, information hiding, while having de�cits in regards
to the single responsibility principle.

A APPENDIX
A.1 Benchmark Base
Table 6 lists all 50 open-source projects that were analyzed to build
the benchmark base.

Table 6: Benchmark suite

Project Version Release Date LLOC
Vuze 5740 2016-11-01 624,049
Weka 3.9.1 2016-12-01 319,356
Hibernate 5.2.5 2016-11-24 284,550
JasperReports 6.4.0 2016-10-03 275,346
Cassandra 3.9 2016-09-29 270,420
Infoglue 3.5.1.0 2016-11-01 236,478
SVNKit 1.8.14 2016-10-10 211,579
HSQLDB 2.3.4 2016-05-16 171,018
H2 1.4.193 2016-11-01 137,220
Findbugs 3.0.1 2015-06-06 113,139
JEdit 5.3.1 2015-10-01 112,385
RSyntaxTextArea 2.6.1 2017-02-06 111,838
Ant 1.9.7 2016-04-01 108,146
JGit 4.6.0 2016-09-21 103,278
Apache jMeter 3.1 2016-11-20 102,252
BlueJ 3.1.6 2016-02-01 99,314
Lucene 6.3.0 2016-11-08 96,514
SweetHome3D 5.4 2017-01-01 94,361
TuxGuitar 1.4 2016-12-01 93,793
Pixelitor 4.0.2 2016-05-03 84,149
Apache Mahout 0.12.3 2016-09-07 74,699
Hudson 3.3.2 2016-02-15 74,054
GanttProject 2.8.1 2016-08-05 59,354
Jersey 2.25 2016-12-08 57,660
Apache Tika-Core 1.13 2016-05-09 53,030
Log4j 2.8 2017-02-01 46,332
FitNesse 20161106 2016-11-01 39,572
Restlet 2.3.9 2016-12-19 36,837
Checkstyle 7.3 2016-11-03 34,704
jHotDraw 8 2016-06-01 32,710
spring-core 4.3.4 2016-11-07 32,521
testng 6.10 2016-11-29 31,310
joda-time 2.9.6 2016-12-19 28,718
HttpClient 4.5.2 2016-02-26 28,717

Improving Object-Oriented Design �ality IWSM-Mensura, October 2017, Gothenburg, Sweden

Project Version Release Date LLOC
Apache Comm. Collection 4.1 2015-11-01 27,820
Apache Comm. Lang 3.5 2016-10-01 26,578
Zxing 3.3.30 2016-09-16 24,257
Xstream 1.4.9 2016-03-16 22,161
PMD 5.5.4 2017-01-01 21,932
jackson-core 2.8.5 2016-11-14 21,471
myBatis 3.4.2 2017-01-01 20,524
M2Eclipse 1.8 2016-06-01 18,682
Apache Shiro 1.3.2 2016-09-09 18,575
jBehave 4.1 2016-12-01 16,249
Mockito 2.7.1 2017-02-01 14,127
JUnit 5.0.0M3 2016-11-01 12,043
Cobertura 2.2.1 2015-02-26 10,157
Gson 2.8.0 2016-10-27 9,624
slf4j 1.7.22 2016-12-13 7,811
Retro�t 2.1.0 2016-06-15 3,713

REFERENCES
[1] Jagdish Bansiya and Carl G. Davis. 2002. A hierarchical model for object-oriented

design quality assessment. IEEE Transactions on Software Engineering 28, 1 (2002),
4–17.

[2] Lionel C. Briand, Jürgen Wüst, John W. Daly, and Victor D. Porter. 2000. Ex-
ploring the relationships between design measures and software quality in
object-oriented systems. Journal of Systems and Software 51, 3 (2000), 245–273.
DOI:https://doi.org/10.1016/S0164-1212(99)00102-8

[3] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe
Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, Raghvinder
Sangwan, Carolyn Seaman, Kevin Sullivan, and Nico Zazworka. 2010. Managing
Technical Debt in Software-reliant Systems. In Proceedings of the FSE/SDP Work-
shop on Future of Software Engineering Research (FoSER ’10). ACM, New York, NY,
USA, 47–52. DOI:https://doi.org/10.1145/1882362.1882373

[4] William Brown, Raphael Malveau, Hays McCormick, and Thomas Mowbray.
1998. AntiPatterns: Refactoring Software, Architectures, and Projects in Crisis.
Wiley and Sons, New York, NY, USA.

[5] Johannes Bräuer, Reinhold Plösch, Matthias Saft, and Christian Körner. 2017.
A Survey on the Importance of Object-Oriented Design Best Practices. In Pro-
ceedings of the 35th Euromicro Conference on Software Engineering and Advanced
Applications, SEAA ’17. Vienna, Austria, accepted for publication.

[6] Shyam R. Chidamber and Chris F. Kemerer. 1994. A metrics suite for object
oriented design. IEEE Transactions on Software Engineering 20, 6 (1994), 476–493.
DOI:https://doi.org/10.1109/32.295895

[7] José P. Correia and Joost Visser. 2008. Benchmarking Technical Quality of
Software Products. In 15th Working Conference on Reverse Engineering, 2008.
WCRE ’08. 297–300. DOI:https://doi.org/10.1109/WCRE.2008.16

[8] Ward Cunningham. 1992. The WyCash Portfolio Management System. In Ad-
dendum to the Proceedings on Object-oriented Programming Systems, Languages,
and Applications (Addendum) (OOPSLA ’92). ACM, New York, NY, USA, 29–30.
DOI:https://doi.org/10.1145/157709.157715

[9] Eduardo Figueiredo, Claudio Sant’Anna, Alessandro Garcia, and Carlos Lucena.
2012. Applying and evaluating concern-sensitive design heuristics. Journal of
Systems and Software 85, 2 (2012), 227–243. DOI:https://doi.org/10.1016/j.jss.
2011.09.060

[10] Martin Fowler, Kent Beck, John Brant, and William Opdyke. 1999. Refactoring:
Improving the Design of Existing Code. Addison Wesley, Reading, MA, USA.

[11] Samarthyam Ganesh, Tushar Sharma, and Girish Suryanarayana. 2013. Towards
a Principle-based Classi�cation of Structural Design Smells. Journal of Object
Technology 12, 2 (2013), 1–29.

[12] Suryanarayana Girish, Samarthyam Ganesh, and Sharma Tushar. 2014. Refac-
toring for Software Design Smells - Managing Technical Debt (1 ed.). Morgan
Kaufmann. http://www.designsmells.com/resources.php

[13] Harald Gruber, Reinhold Plösch, and Matthias Saft. 2010. On the Validity of
Benchmarking for Evaluating Code Quality. In Proceedings of the Joined Inter-
national Conferences on Software Measurement IWSM/MetriKon/Mensura 2010.
Shaker Verlag, Aachen.

[14] Donald C. Hambrick, Ian C. MacMillan, and Diana L. Day. 1982. Strategic At-
tributes and Performance in the BCG Matrix-A PIMS-Based Analysis of Industrial
Product Businesses1. Academy of Management Journal 25, 3 (1982), 510–531.
DOI:https://doi.org/10.2307/256077

[15] Salima Hassaine, Foutse Khomh, Yann-Gaël Guéhenéuc, and Sylvie Hamel.
2010. IDS: An Immune-Inspired Approach for the Detection of Software
Design Smells. In 2010 Seventh International Conference on the Quality of In-
formation and Communications Technology (QUATIC). IEEE, 343–348. DOI:
https://doi.org/10.1109/QUATIC.2010.61

[16] David C. Hoaglin and Boris Iglewicz. 1987. Fine-Tuning Some Resistant Rules
for Outlier Labeling. J. Amer. Statist. Assoc. 82, 400 (1987), 1147–1149. DOI:
https://doi.org/10.2307/2289392

[17] Michael Kläs, Jens Heidrich, Jürgen Münch, and Adam Trendowicz. 2009. CQML
Scheme: A Classi�cation Scheme for Comprehensive Quality Model Landscapes.
In Proceedings of the 35th Euromicro Conference on Software Engineering and
Advanced Applications, SEAA ’09. Patras, Greece, 243–250. DOI:https://doi.org/
10.1109/SEAA.2009.88

[18] Jean L. Letouzey and Thierry Coq. 2010. The SQALE Analysis Model: An Analysis
Model Compliant with the Representation Condition for Assessing the Quality
of Software Source Code. In 2010 Second International Conference on Advances in
System Testing and Validation Lifecycle. Nice, France, 43–48. DOI:https://doi.org/
10.1109/VALID.2010.31

[19] Radu Marinescu. 2004. Detection strategies: metrics-based rules for detecting
design �aws. In Proceedings of the 20th IEEE International Conference on Software
Maintenance. IEEE, 350–359. DOI:https://doi.org/10.1109/ICSM.2004.1357820

[20] Radu Marinescu. 2012. Assessing technical debt by identifying design �aws in
software systems. IBM Journal of Research and Development 56, 5 (2012), 9:1–13.
DOI:https://doi.org/10.1147/JRD.2012.2204512

[21] Robert C. Martin. 2003. Agile software development: Principles, Patterns and
Practices. Pearson Education, Upper Saddle River, NJ, USA.

[22] Alois Mayr, Reinhold Plösch, and Christian Körner. 2014. A Benchmarking-Based
Model for Technical Debt Calculation. In Proceedings of the 14th International
Conference on Quality Software (QSIC 2014). IEEE, Dallas, TX, USA, 305–314. DOI:
https://doi.org/10.1109/QSIC.2014.35

[23] Naouel Moha, Yann-Gaël Guéhéneuc, Laurence Duchien, and Anne-Françoise
Le Meur. 2010. DECOR: A Method for the Speci�cation and Detection of Code
and Design Smells. IEEE Transactions on Software Engineering 36, 1 (2010), 20–36.
DOI:https://doi.org/10.1109/TSE.2009.50

[24] Reinhold Plösch, Johannes Bräuer, Christian Körner, and Matthias Saft. 2016.
Measuring, Assessing and Improving Software Quality based on Object-Oriented
Design Principles. Open Computer Science 6, 1 (2016). DOI:https://doi.org/10.
1515/comp-2016-0016

[25] Reinhold Plösch, Johannes Bräuer, Christian Körner, and Matthias Saft. 2016.
MUSE - Framework for Measuring Object-Oriented Design. Journal of Object
Technology 15, 4 (2016), 2:1–29.

[26] Roger S. Pressman and Bruce R. Maxim. 2014. Software Engineering: A Practi-
tioner’s Approach (8th ed.). Mcgraw-Hill Education - Europe, New York, NY.

[27] Arthur J. Riel. 1996. Object-Oriented Design Heuristics (1st ed.). Addison-Wesley
Longman Publishing, Boston, MA, USA.

[28] Ganesh Samarthyam, Girish Suryanarayana, Toshi Sharma, and Swastik Gupta.
2013. MIDAS: A design quality assessment method for industrial software. In
Proceedings of the 35th International Conference on Software Engineering (ICSE
2013). San Francisco, CA, USA, 911–920. DOI:https://doi.org/10.1109/ICSE.2013.
6606640

[29] Jan Schumacher, Nico Zazworka, Forrest Shull, Carolyn Seaman, and Michele
Shaw. 2010. Building Empirical Support for Automated Code Smell Detection. In
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM ’10). ACM, New York, NY, USA, 8:1–8:10.
DOI:https://doi.org/10.1145/1852786.1852797

[30] Frank Simon, Olaf Seng, and Thomas Mohaupt. 2006. Code-Quality-Management:
technische Qualität industrieller Softwaresysteme transparent und vergleichbar
gemacht. dpunkt-Verlag.

[31] Ramanath Subramanyam and Mayuram S. Krishnan. 2003. Empirical analysis
of CK metrics for object-oriented design complexity: implications for software
defects. IEEE Transactions on Software Engineering 29, 4 (2003), 297–310. DOI:
https://doi.org/10.1109/TSE.2003.1191795

[32] Adrian Trifu and Radu Marinescu. 2005. Diagnosing design problems in object
oriented systems. In 12th Working Conference on Reverse Engineering. IEEE, 10
pp. DOI:https://doi.org/10.1109/WCRE.2005.15

[33] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. 2012. Experimentation in Software Engineering. Springer Berlin
Heidelberg, Berlin, Heidelberg.

[34] Nico Zazworka, Carolyn Seaman, and Forrest Shull. 2011. Prioritizing Design
Debt Investment Opportunities. In Proceedings of the 2Nd Workshop on Managing
Technical Debt (MTD ’11). ACM, New York, NY, USA, 39–42. DOI:https://doi.
org/10.1145/1985362.1985372

[35] Nico Zazworka, Michele A. Shaw, Forrest Shull, and Carolyn Seaman. 2011.
Investigating the Impact of Design Debt on Software Quality. In Proceedings of
the 2nd Workshop on Managing Technical Debt (MTD ’11). ACM, New York, NY,
USA, 17–23. DOI:https://doi.org/10.1145/1985362.1985366

https://doi.org/10.1016/S0164-1212(99)00102-8
https://doi.org/10.1145/1882362.1882373
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/WCRE.2008.16
https://doi.org/10.1145/157709.157715
https://doi.org/10.1016/j.jss.2011.09.060
https://doi.org/10.1016/j.jss.2011.09.060
http://www.designsmells.com/resources.php
https://doi.org/10.2307/256077
https://doi.org/10.1109/QUATIC.2010.61
https://doi.org/10.2307/2289392
https://doi.org/10.1109/SEAA.2009.88
https://doi.org/10.1109/SEAA.2009.88
https://doi.org/10.1109/VALID.2010.31
https://doi.org/10.1109/VALID.2010.31
https://doi.org/10.1109/ICSM.2004.1357820
https://doi.org/10.1147/JRD.2012.2204512
https://doi.org/10.1109/QSIC.2014.35
https://doi.org/10.1109/TSE.2009.50
https://doi.org/10.1515/comp-2016-0016
https://doi.org/10.1515/comp-2016-0016
https://doi.org/10.1109/ICSE.2013.6606640
https://doi.org/10.1109/ICSE.2013.6606640
https://doi.org/10.1145/1852786.1852797
https://doi.org/10.1109/TSE.2003.1191795
https://doi.org/10.1109/WCRE.2005.15
https://doi.org/10.1145/1985362.1985372
https://doi.org/10.1145/1985362.1985372
https://doi.org/10.1145/1985362.1985366

	Abstract
	1 Introduction
	2 Related Work
	3 Approach to guide Design Improvements
	3.1 Design Best Practices
	3.2 Benchmarking
	3.3 Improvement Portfolio Matrix

	4 Feasibility Study
	4.1 Design Measurement
	4.2 Design Assessment
	4.3 Design Improvement

	5 Limitations
	6 Conclusion and Future Work
	A Appendix
	A.1 Benchmark Base

	References

