
A Survey on the Importance of Object-oriented

Design Best Practices

Johannes Bräuer and Reinhold Plösch

Department of Business Informatics – Software Engineering

Johannes Kepler University Linz

Linz, Austria

[johannes.braeuer, reinhold.ploesch]@jku.at

Matthias Saft and Christian Körner

Corporate Technology

Siemens AG

Munich, Germany

[matthias.saft, christian.koerner]@siemens.com

Abstract—To measure object-oriented design quality, metric-

based approaches have been established. These have then been

enhanced by identifying design smells in code. While these

approaches are useful for identifying hot spots that should be

refactored, they are still too vague to sufficiently guide software

developers to implement improvements. This is why our work

focuses on measuring the compliance of source code with object-

oriented design best practices. These design best practices were

systematically derived from the literature and can be mapped to

design principles, which can help reveal fundamental object-

oriented design issues in a software product. Despite the

successful applications of this approach in industrial and open

source projects, there is little accepted knowledge about the

importance of various design best practices. Consequently, this

paper shows the result of an online survey aimed at identifying

the importance of 49 design best practices on design quality. In

total, 214 people participated in the survey, resulting in an

average of 138 opinions for each practice. Based on these

opinions, five very important, 21 important, 12 moderately

important and 11 unimportant design best practices could be

derived. This information about importance helps managing

design improvements in a focused way.

Keywords—design best practices; design principles; design

quality; software quality.

I. INTRODUCTION

Software products with good object-oriented design are
flexible, reusable and maintainable [1]. In the past, software
metrics were used to express the compliance of source code
with object-oriented design aspects [2], [3]. Nevertheless, it has
been recognised that metrics are vague for dealing with the
complexity of design and for driving concrete improvements
[4]. Based on this cognition, the idea of identifying code or
design smells in source code has been established and is used
to find hot spots that threaten the flexibility, reusability and
maintainability of software products [5].

Despite good progress in localising design flaws based on
the identification of design smells, these design smells are still
too fine-grained to conclude a design assessment. Hence, a
more recent approach has been published by Samarthyam et al.
[6], which picks up the idea of measuring design principles as
part of a design assessment. This approach is called MIDAS
and refers to the skills and knowledge of experts who manually
assess the adherence of design principles. By using this more

abstract view of design quality, a better understanding of issues
and problem sources can be achieved. However, to standardise
these manual investigations, a model for design quality should
be used that is currently not available [6].

In order to bridge this gap of the missing object-oriented
design quality model, this work follows the approach of
identifying violations of object-oriented design best practices
directly in source code. In the remainder of this article, we use
shorter-term design best practices, while always referring to
object-oriented design best practices. Generally, design best
practices allow the reuse of expert knowledge and can
therefore be applied to guide software designers and
developers. To find the violations of design best practices, we
developed a tool called MUSE [7]. MUSE contains a set of 67
design best practices – design rules – for the programming
languages Java, C# and C++. Most of the rules cover all three
programming languages since they are related to object-
oriented concepts rather than language features.

MUSE has passed various accuracy checks and has been
applied in industrial as well as open-source projects [7]. Users
are interested in the measurement results, which are compiled
as a list of violations of design best practices with an exact
location for each violation. Nevertheless, up to now, we could
not recommend which violations should be addressed first
based on their importance. Consequently, we decided to
conduct a survey to gather data that allow a more differentiated
view of the importance of our design best practices. This set of
67 rules has been reduced to 49, since future work will focus
on Java, which is covered by this selection of these 49 rules.

The remainder of this article is structured as follows. In the
next section, related work is discussed. Then, our novel
approach for design quality improvement is briefly explained
before showing the research design in Section IV. An overview
of the survey is given in Section V. Section VI analyses the
results and derives the importance of the 49 design best
practices. Finally, the paper draws a conclusion from the results
and provides an avenue for future work.

II. RELATED WORK

To measure object-oriented design quality, the literature
distinguishes different approaches. Metric-based approaches
such as QMOOD [3] and the metric suite provided by

reinhold
Schreibmaschinentext
Preprint - original version can found at http://ieeexplore.ieee.org/document/8051323/

reinhold
Schreibmaschinentext

Chidamber and Kemerer [2] try to measure design quality by
means of, e.g., cohesion, coupling and inheritance-related
metrics. The effort to measure these design aspects is typically
low. Empirical studies indicate that some of the metrics (e.g.,
inheritance depth, number of methods, coupling between
objects) are useful for measuring design quality in the sense
that there is a correlation between the metrics and external
quality (usually bugs) [8], [9]. Additionally, it is possible to
aggregate these metrics into an overall quality index as
proposed by QMOOD and to compare the results of different
projects or project versions. Nevertheless, metric-based
approaches fail to support developers since the semantic
relation between a metric value and source code is difficult to
grasp.

Riel coins the term object-oriented design heuristics [10].
In his book, he takes a constructive approach and formulates
design heuristics in a way that a software developer can use
them as templates when designing or implementing software
[10]. Riel associates his design heuristics with more general
language-oriented design topics such as inheritance
relationships, association relationships and the relationships
between classes and objects. The design heuristics provided by
Riel are described with a pattern language, but give no hints on
the impact of these heuristics on general quality attributes or on
their importance.

Another set of approaches tries to identify so-called design
smells or code smells [5], [11], [12]. The work on design
smells is influenced by the design heuristics of Riel [10] as
well as the research on refactoring and anti-patterns by Fowler
et al. [13] and Brown et al. [14], respectively. These design
smells, for instance, data clumps or feature envy [13],
semantically express a design problem and therefore try to
make it tangible for software developers. From our point of
view, this is an improvement over metric-based approaches.
However, typical measuring approaches (e.g., [5], [15]) for
design smells are also metric-based with the difference of not
relying on a single metric but on a combination thereof.

DÉCOR is another smell-based approach that is not based
on metrics but rather on a method and language that allows to
specify design smells [16]. The underlying approach provides
all the necessary steps to define a so-called detection technique.
Specifically, step three of DÉCOR is the translation of a textual
bad smell definition into algorithms that can be applied to
detect it. To validate the method, the authors instantiate
DÉCOR and test the detection techniques on four bad smells
[16].

Ganesh et al. [17] collect and categorise design smells by
using a pattern language; in other words, they focus on
semantically grasping the design problem without providing
any hints on how to measure design smells [18]. This work
contains a large number of structural design smells at the
micro-architecture level with an emphasis on object-oriented
design principles. In addition to collecting and describing the
design smells, Ganesh et al. relate them to the object-oriented
design principles abstraction, encapsulation, modularity and
hierarchy.

Focusing on design aspects rather than the mere source
code level provides a better lever for enhancing software

quality. While some scientific work investigates the impact of
code and design smells on the quality attribute maintainability
[19], little work systematically investigates and validates the
relation between design smells and (object-oriented) design
quality in general. Furthermore, there are no systematic
investigations that try to answer questions related to the
importance of design best practices or design smells apart from
focused work in the realm of design metrics. In fact, Lozano et
al. [20] point out that there is little evidence of the negative
impact of design smells.

III. NOVEL APPROACH FOR DESIGN QUALITY IMPROVEMENT

As mentioned above, the community is missing a reference
model for design quality [6]. In the long run, our work focuses
on this gap but using a different approach compared with
related work in the past. In contrast to using metrics or design
smells to express the design of software, we are interested in
understanding the compliance of source code with (fine-
grained) design principles such as information hiding, the
single responsibility principle or don’t repeat yourself.
Therefore, it is important to facilitate the understanding of
design deficiencies at a level more abstract than design smells,
but not as coarse as that suggested by Ganesh et al. [18], who
cluster design problems based on abstraction, encapsulation or
modularisation.

A list of 32 design principles has been systematically
identified and important ones have been derived based on a
survey [21]. Guided by this set of principles, a top-down
approach was applied to identify and specify design best
practices related to the design principles. An example of a
design principle and its related design best practices is shown
in Figure 1. Based on this example, the information hiding
principle is affected (threatened) by, e.g., classes that provide
public fields, methods that return mutable collections or
methods that could declare an interface instead of a concrete
class as the return type. While the shown example is just an
abstract view of measuring design principles by means of
design best practices, a more elaborated discussion is provided
in Plösch et al. [21], which explains the underlying meta-model
and its applicability.

Fig. 1. Design principle and its design best practices

As another major difference to Ganesh et al., we did not
stop at the specification level, but also implemented the static
code analysis tool MUSE that analyses Java, C# or C++ source
code and finds the violations of these design best practices [7].
As already mentioned in the Introduction, this article
concentrates on Java measures. The resulting MUSE
measurement represents a list of violations that can be
uploaded to SonarQube

1
. In SonarQube, the findings are linked

to the source files where the developer can start investigating
the identified issues.

IV. RESEARCH DESIGN – SURVEY RESEARCH

This section concentrates on the research direction by
highlighting the research goal of this work and explaining the
design of the conducted survey.

A. Research Question

MUSE can be applied to manage design improvements for
a software product. However, there remains the limitation that
users cannot be guided to the most important and critical
violations. In order to provide a default setting for the
importance of the design best practices in MUSE and to
support managers in prioritising improvement actions, we
derived the following research question at the beginning of the
investigation: RQ: How important are various design best
practices for achieving good object-oriented design?

To answer this question, a broad view of the topic is
required since object-oriented design is context-dependent and
gathering many opinions can compensate for the impact of the
context. In other words, conducting, e.g., a focus group
discussion with a relatively small set of participants may run
into the problem of non-generalisable findings. The same
problems arise for case studies or similar research methods.
Therefore, we choose a survey-based research approach to
answer the research question.

B. Survey Design

The study objects in this survey are the 49 design best
practices suitable for Java. Each of these practices has a unique
name and a description that clarifies the intention and provides
additional details to understand the design best practice. In
order to guarantee that the name and description are well
understood, a pre-test with eight experienced Master’s students
was conducted. In this pre-test, the students had to interpret the
name and description of each design best practice by writing a
code snippet that shows a violation of this design best practice.
Problems that occurred during this pre-test were collected and
discussed. As a result, improvements to the name and
descriptions could be made. Finally, a cross check ensured that
various notations and terms were consistently used across all
descriptions.

After this pre-test, the questionnaire was designed based on
a guideline [22] and the recommendations given in [23]. The
questionnaire consists of four question blocks and the end
page:

1 https://www.sonarqube.org/.

Personal Information: The first question block asked the
participants about the affiliation, the job position and for how
many years they have been working in the current job position.

Background and Experience: The second question block
gathered information on programming skills and expertise in
object-oriented software design. Therefore, one question asked
about the business domain in which the participants are
working and another about the level of experience in Java, C#,
and C++. To collect data about the design expertise, the
participants had to self-assess their design expertise and how
they learned object-oriented design.

Assessment Blocks: Each assessment block allows
assessing the importance of seven randomly chosen design best
practices with a five-point scale from 1 (very unimportant) to 5
(very important). The answers were mandatory, meaning that it
was not possible to skip a design best practice. After assessing
the first block, the questionnaire continued with the next block
of seven randomly chosen design best practices and so forth.

After each individual assessment block, we explicitly
highlighted the current progress and showed appreciation for
the already invested effort. In addition, we motivated the
participants to continue. If the participant had no more time, it
was possible to directly go to the open question block close to
the end of the survey. By providing this kind of freedom and
some distraction from the monotonous task of assessing the
importance, we tried to keep the motivation high to get as
many assessments as possible.

Open Question Block: In this block, the questionnaire
invited the participants to note object-oriented design aspects
not covered by the questionnaire. Additionally, feedback could
be posted here.

 End of Survey: Finally, the last page notified about the
successful submission of the questionnaire. Additionally, the
participants were invited to subscribe for a summary of the
survey results.

C. Participant Recruitment

We followed two approaches for recruiting participants.
First, we sent personalised emails to a list of people who we
know have software engineering skills in research or practice
or who are leaders in software developing organisations. This
survey invitation, including the survey link and access token,
contained the request to distribute the participation details
among colleagues and employees. Second, we recruited people
from social networking and business platforms such as
LinkedIn, XING and ResearchGate. For this purpose, a generic
post was published in designated discussion groups and forums
on these platforms. These posts explained the purpose of the
survey and the benefits a participant can get in return.
Additionally, the survey link and an access token were
provided.

V. SURVEY OVERVIEW

In this section, an overview of the survey sample is
provided by discussing the drop-out rate, showing
demographics and presenting the software engineering and oo-
programming skills of the participants.

Fig. 2. Drop-outs among question blocks

Fig. 3. Distribution of affiliations

A. General Overview

The survey was available from 26
th

 October until 21
st

November 2016. In total, 294 individuals interacted with the
survey, meaning that they followed the invitation link and hit
the start button on the welcome page. Then, there was a drop-
out of 28 people on the personal information page and 17
people on the background & experience page. A large
proportion (35) left during the assessment of the first seven
design best practices, resulting in 214 successfully finished
questionnaires.

To our surprise, 52.9% of the 214 participants were
recruited by our posts on the social networking platforms.
Although the posts were placed in topic-related discussion
groups and forums, the number of people who were willing to
contribute in this survey is high, at least compared with
previous surveys we conducted.

As mentioned above, the design of the survey provided
some degree of freedom for the participants and they could
decide to end the survey after each assessment block. The
analysis of the drop-out rate regarding this degree of freedom is
shown in Figure 2. According to the graph and as mentioned
before, 214 participants expressed their opinion for at least
seven design best practices; afterwards, 23 quit the survey. The
drop-out rates between the assessment of the second and third
as well as the fourth and fifth blocks are conspicuous but
explainable. At these points, the questionnaire presented an
image and a short text that showed appreciation for the already
invested effort. In addition, the participants had the chance to
skip the rest of the survey at these stages. Nevertheless, 86
participants finished the entire survey, meaning that they
continued until the end of the survey.

B. Personal Information

The first question in the personal information block asked
about the current affiliation of the participants. Figure 3 shows
the distribution of the participants among academic
organisations, self-employment and companies differentiated
by the number of employees.

According to this diagram, there is a well-balanced
distribution between all affiliations, ranging from 13 self-
employed participants to 44 participants working at a company
with more than 1,000 employees. However, there is strong
participation from industry with 176 people with a practical
point of view rather than a theoretical one. The three people
who selected the option other are currently not working or
employed at a governmental organisation with more than
25,000 clerks.

The distribution of the participants among the job roles
shows that many software engineers and architects expressed
their opinion. In more detail, 93 software engineers and 45
software architects – together they represent 64% of the total
quantity – successfully completed the survey. Figure 4 depicts
the number of participants for each job position. The 12
participants that selected the option other noted the following
roles: trainer, teaching, technical director, managing director
(technical), CTO, director of institute, founder, tech lead,
software craftsman and systems engineer.

C. Background and Experience

The second question block focused on background
information and the expertise of the participants in
programming languages. The analysis of the domains in which
the participants are working highlights two disciplines leading
the field. The top business domain is the development of
web/service-oriented systems (66) followed by business

Fig. 4. Distribution of job roles

Fig. 5. Distribution of business domains

Fig. 6. Accumulated programming skills in Java, C# and C++

information systems (56). Figure 5 shows the distribution
among the other domains. For the sake of completeness, the 16
participants who selected the option other are developing user
interfaces, desktop applications, CAD/CAM systems, human–
computer interaction, language implementation, information
systems, virtual machines, compilers, GUI systems, finance,
CAD systems, healthcare, nuclear reactors and manufacturing
applications.

In order to filter the answers, we asked the participants to
assess their self-appraisal regarding their expertise in a
particular object-oriented programming language. The data
analysis shows that many participants have top and good
experience in Java (125), while C# (80) and C/C++ (84) are
less dominant. Nevertheless, there is still a representative group
of C# and C/C++ engineers with top and good experience
therein. For each participant, we consider the highest
experience level regardless of the programming language. As
shown there, one participant had no experience in any of the
three languages but good experience in object-oriented PHP.
Figure 6 depicts the total number of participants with top,
good, moderate, some or no experience itemised by
programming language.

In addition to the programming languages, a question asked
about the self-appraisal regarding object-oriented programming
skills. Interestingly, a strong majority assessed this aspect with
good or top expertise. This insight strengthened the
representation of our database and addressed the threat to
internal validity as we can show that the participants are
familiar with object-oriented concepts and can assess design
best practices at least to some degree.

VI. IMPORTANCE OF DESIGN BEST PRACTICES

A. Individual Result

Considering the opinions of all 214 participants, we
calculated an average assessment for all 49 design best
practices regarding their importance. This calculation uses an
equally increasing weight from very unimportant to very
important, meaning that the assessment of very unimportant is
weighted with 1 and very important with 5. As a high-level
result, we can show that five rules are considered as very
important, 21 as important, 12 as moderately important and 11
as unimportant. The exact details are depicted in Table I.

Additionally, this table shows the standard deviation and
skew of answers for each design best practice. The standard
deviation ranges from 0.79 to 1.24. A low standard deviation
means that the participants agree in their opinion, while a high
value stands for disagreement. The skew – as an indicator of
the asymmetry of the answers about the mean – shows the
tendency towards either very important or very unimportant.
For this discussion, the skew is multiplied by -1 in order to
better express its meaning. Thus, a positive value expresses an
important design best practice in contrast to a negative value
that represents a tendency towards unimportance.

The average of all opinions for one design best practice and
the standard deviation were used to calculate an importance
range for (almost) each design best practice. The only rule that
does not provide a range is AvoidDuplicates because there is a
general agreement on its very high importance. For all the other
design best practices, the range is shown in the last column of
Table I and this provides some degree of freedom when using
the rules (e.g. assessing software design). Hints for up- or
downgrading various design best practices are discussed below.

B. Analysis of Border Cases

From a broader perspective, 33 rules are classified as high
and moderate. Thus, it should be discussed whether candidates
are close crossing a border. Figure 7 shows the distribution of
rule assessments within the high range. According to this
figure, the three rules DocumentInterfaces,
AvoidLongParameterLists and UseInterfacesIfPossible, which
are marked with an h↑ importance in Table I, have an average
assessment of 3.96 and are very close to the upper boundary.
Consequently, these three rules are good candidates for a rise to
very high.

TABLE I.

Fig. 7. Accumulated programming skills in Java, C# and C++

Fig. 8. Accumulated programming skills in Java, C# and C++

TABLE II. DESIGN BEST PRACTICES ORDERED BY IMPORTANCE

A
v

er
a

g
e

D
ef

a
u

lt

Im
p

o
rt

a
n

ce

S
ta

n
d

a
rd

D
ev

ia
ti

o
n

S
k

ew
 *

 (
-1

)

R
a

n
g

e

AvoidDuplicates 4.42 vh 0.79 1.74 vh

AvoidUsingSubtypesInSuper. 4.27 vh 0.94 1.11 h-vh

AvoidPackageCycles 4.27 vh 0.94 1.43 h-vh

AvoidCommandsInQueryM. 4.23 vh 0.93 0.94 h-vh

AvoidPublicFields 4.09 vh 1.09 1.22 h-vh

DocumentInterfaces 3.96 h↑ 1.07 0.95 m-vh

AvoidLongParameterLists 3.96 h↑ 0.85 0.82 h-vh

UseInterfacesIfPossible 3.96 h↑ 1.08 0.99 m-vh

AvoidStronglyCoupledPack. 3.81 h 0.92 0.41 m-vh

AvoidNonCohesiveImpleme. 3.80 h 1.05 0.78 m-vh

AvoidUnusedClasses 3.80 h 1.06 0.76 m-vh

DontReturnUninvolvedData 3.80 h 0.92 0.72 m-vh

AvoidNonCohesivePackages 3.79 h 0.93 0.51 m-vh

DocumentPublicMethods 3.77 h 1.11 0.89 m-vh

UseCompositionNotInherita. 3.76 h 1.08 0.60 m-vh

DocumentPublicClasses 3.76 h 1.12 0.68 m-vh

AvoidPublicStaticFields 3.74 h 1.15 0.63 m-vh

AvoidDiamondInheritanceSt. 3.68 h 0.95 0.45 m-vh

AvoidLongMethods 3.64 h 1.12 0.44 m-vh

AvoidSimilarNamesForDiff. 3.64 h 1.04 0.35 m-vh

AvoidUnusedAbstractions 3.63 h 1.19 0.61 m-vh

CheckUnsuitableFunctionality 3.61 h 0.95 0.54 m-vh

AvoidSimilarAbstractions 3.60 h 0.94 0.49 m-vh

DocumentPackages 3.58 h↓ 1.19 0.55 l-vh

UseInterfacesAsReturnType 3.54 h↓ 1.20 0.40 l-vh

AvoidUncheckedParameter. 3.52 h↓ 1.02 0.45 h-vh

AvoidSimilarNamesForSame. 3.49 m↑ 1.03 0.39 m-h

CheckObjectInstantiatiosByN. 3.45 m↑ 1.07 0.26 l-h

AvoidRepetitionOfPackage. 3.44 m↑ 1.05 0.48 l-h

ProvideInterfaceForClass 3.34 m 1.12 0.33 l-h

AvoidRuntimeTypeIdentifica. 3.32 m 1.07 0.49 l-h

AvoidDirectObjectInstantiati. 3.32 m 1.07 0.41 l-h

CheckUnusedSupertypes 3.32 m 0.91 0.28 l-h

AbstractPackagesShouldNot. 3.31 m 1.03 0.33 l-h

DontReturnMutableCollectio. 3.31 m 1.08 0.23 l-h

AvoidMassiveCommentsInC. 3.24 m 1.20 0.19 l-h

AvoidReturningDataFromCo. 3.14 m 1.05 0.21 l-h

UseAbstractions 3.02 m↓ 1.24 0.12 vl-h

CheckUsageOfNonFullyQual. 2.97 l 0.96 0.09 l-m

AvoidManySetter 2.96 l 1.05 -0.24 vl-m

AvoidHighNumberOfSubpkg. 2.92 l 0.96 0.07 vl-m

AvoidConcretePackage 2.92 l 0.90 0.07 vl-m

AvoidSettersForHeavilyUsed. 2.86 l 1.16 -0.14 vl-m

AvoidAbstractClassesWithO. 2.85 l 1.07 -0.17 vl-m

DontInstantiateImplementatio. 2.85 l 1.08 -0.20 vl-m

AvoidManyGetters 2.68 l 1.10 -0.43 vl-m

AvoidProtectedFields 2.67 l 1.11 -0.39 vl-m

CheckDegradedPackageStru. 2.62 l 0.94 -0.12 vl-m

AvoidManyTinyMethods 2.60 l 1.02 -0.50 vl-m
vh – very high, h – high, m – moderate, l – low, vl – very low

After this group of three rules, there is a gap to the next
design best practices when reading Figure 7 from left to right.
These design best practices are close to the centre of the
assessment scale and should adhere to the high importance
level. Being close to the centre means that their assessment
deviates by +/-0.15 points. In other words, rules below 3.60 are
candidates for a downgrade to moderate. According to Figure 7
and indicated by h↓ in Table I, the three rules Document-
Packages, UseInterfacesAsReturnType and AvoidUnchecked-
ParametersOfSetters could have a moderate importance level.

Similar to the discussion on design best practices within the
high range, three candidates within the moderate range could
also rise to high. More specifically, the rules
AvoidSimilarNamesForSameDesignElements, CheckObject-
Instantiations and AvoidRepetitionOfPackageNamesOnAPath
have an average weight above 3.40 as depicted on the scale in
Figure 8 and indicated with m↑ in Table I. On the opposite
side, only UseAbstractions represents a candidate for the low
importance level. The remaining moderate design best
practices are close to the centre when checking the +/-0.15-
point deviation from 3.25.

C. Application for Design Improvement

Given these findings, it is now possible to guide software
developers or designers when analysing MUSE measurements.
Hence, those violations of design best practices considered to
have very high importance on design quality should be
addressed before investing effort into violations of design best
practices with lower importance. Consequently, this supports
decision making and ensures efficient design quality
improvement from an empirical point of view.

In addition, the data from the survey help configure the
importance of design best practices by providing a reasonable
range within which to act. Depending on the context, a
development team might decide not to use the standard value
given in the column Default Importance in Table I. From the
survey data, we can then help developers by providing a
reasonable range that should be used; see the column Range in
Table I. For example, if the project team tries to enforce proper
documentation, then an importance level of high for the design
best practice DocumentPublicClasses might not be demanding
enough and could therefore be raised to the importance of very
high. On the other hand, it is not advisable to choose low or
medium for this rule according to our survey data regardless of
the perceived importance of the development team.

An additional value of the importance level for all design
best practices is the adjustability of design quality assessment
approaches such as calculating design debt or a quality index.
Therefore, our proposed benchmarking-based model for
technical debt can be applied to derive design debt based on the
MUSE rules [24]. To enhance this model, the importance level
of each rule can now better clarify the non-remediation costs of

each rule, which is an important input factor for the calculation.
Finally, the calculated design debt is useful for developers, but
it seems especially useful for managers to understand the cost
and revenue benefits of refactoring parts, which might not be
seen as a waste of effort but rather an investment in future
development.

VII. THREATS TO VALIDITY

Threats to internal validity are influences that can affect the
independent variable with respect to causality [25]. Thus, one
issue is understanding the presented design best practices. To
ensure a solid description and name for each rule, a pre-test
was conducted. As a consequence of this pre-test, misleading
descriptions were refined and names were adapted. Hence, it
can be argued that the design best practices are well understood
based on the refinements.

Another confounding variable is the perception of the
participants while answering the questions. In other words, the
participants’ opinion about the practical implementation or
relevance of design best practices could have influenced the
estimation. In order to focus attention on only considering the
general importance of a design best practice, a simple check-
box question highlighted the purpose of the survey; the
participant could not continue without marking the “I
understood'' check box.

Threats to external validity are conditions that limit the
ability to generalise the results of the investigation [25]. We
explicitly choose an open survey research method to foster the
generalisability of the results. Facts that supported the decision
were the low complexity of the questions and the low
processing time, which are critical success factors [26].
Consequently, the survey could be distributed among many
people, resulting in a good response rate. The analysis of
demographic aspects shows that the result is derived from a
diverse but experienced sample. This includes various business
domains and job roles. All in all, the strong participation of
practitioners could be achieved, which strengthens the ability to
generalise the findings.

This discussion should consider the implications for
generalising the result to other oo-programming languages.
More specifically, we currently know a set of 67 design best
practices (see Plösch et al. [7]) containing rules for Java, C++
and C#. Consequently, the general findings can be transferred
to other programming languages but with special care; for C++,
additional design features such as multiple inheritance or
macros are available. For C#, there are not as many differences
compared with Java.

VIII. CONCLUSION AND FUTURE WORK

While previous research on enhancing object-oriented
software design has focused on carefully identifying (smelly)
source code spots characterised by design metrics, there is little
evidence on the importance of individual design best practices.
In this study, a survey was conducted in order to investigate
this aspect. Based on the opinions of 214 participants from
different software engineering fields, we derived the

importance of 49 measures; five design best practices were
considered to be of very high importance.

In fact, avoiding duplicates (code clones), the use of
subtypes in supertypes, package cycles, commands in query
methods and public fields were the design concerns considered
to be very important. In other words, following these design
rules in practice can enhance and foster the flexibility,
reusability and maintainability of a software product. Although
it is possible to oversee the compliance of these five aspects by
using a checklist or cheat sheet, monitoring the evolution of the
software design becomes challenging when additionally
considering at least the 21 important rules identified from the
survey.

MUSE was developed to automatically identify violations
of design best practices in source code [7]. The provided
measurement data can be used to discuss upcoming design
decisions and control enhancements. These tasks are now
supported by the contribution of this survey because software
engineers and architects can concentrate on very important (or
important) design best practices first, knowing that the
professional knowledge of a large number of survey
participants leads to the categorisation of these design best
practices to be of high or very high importance.

Having a set of 49 measurable design best practices for
Java is a valuable support for practitioners in software
engineering. Nevertheless, the completeness of our design best
practice collection is not known. Consequently, further work
should focus on finding missing design best practices.

Strengthened by the comments from the survey, we will
continue to investigate aspects for measuring and assessing
design principles such as the information hiding principle,
open-close principle or single responsibility principle.
Software engineers and architects know design principles and
are concerned about them. However, we are not aware of any
method or tool that allows measuring design principles in
source code. Therefore, we defined a design quality model as
briefly addressed in Section III. First insights into this approach
are given in Bräuer [27] and Plösch et al. [21], but a
comprehensive validation is missing.

For this purpose, we want to understand the coverage of
design principles due to design best practices as depicted in
Figure I. The importance data gained from this survey are a
first input. However, for a deeper understanding, we are
currently setting up a number of focus groups to identify the
completeness of our design best practices with regard to the
design principles. Moreover, this investigation should reveal
white spots in measuring design principles and object-oriented
design in general.

REFERENCES

[1] R. C. Martin, Agile software development: principles,

patterns and practices. Upper Saddle River, NJ: Pearson

Education, 2003.

[2] S. R. Chidamber and C. F. Kemerer, “A metrics suite for

object oriented design,” IEEE Trans. Softw. Eng., vol. 20,

no. 6, pp. 476–493, 1994.

[3] J. Bansiya and C. G. Davis, “A hierarchical model for

object-oriented design quality assessment,” IEEE Trans.

Softw. Eng., vol. 28, no. 1, pp. 4–17, 2002.

[4] R. Marinescu, “Measurement and quality in object-

oriented design,” in Proceedings of the 21st IEEE

International Conference on Software Maintenance,

2005. ICSM’05, 2005, pp. 701–704.

[5] R. Marinescu, “Detection strategies: metrics-based rules

for detecting design flaws,” presented at the Software

Maintenance, 2004. Proceedings. 20th IEEE International

Conference on, 2004, pp. 350–359.

[6] G. Samarthyam, G. Suryanarayana, T. Sharma, and S.

Gupta, “MIDAS: A design quality assessment method for

industrial software,” in Proceedings of the 35th

International Conference on Software Engineering (ICSE

2013), 2013, pp. 911–920.

[7] R. Plösch, J. Bräuer, C. Körner, and M. Saft, “MUSE -

Framework for Measuring Object-Oriented Design,” J.

Object Technol., vol. 15, no. 4, pp. 2:1-29, 2016.

[8] L. C. Briand, J. Wüst, J. W. Daly, and D. Victor Porter,

“Exploring the relationships between design measures

and software quality in object-oriented systems,” J. Syst.

Softw., vol. 51, no. 3, pp. 245–273, 2000.

[9] R. Subramanyam and M. S. Krishnan, “Empirical

analysis of CK metrics for object-oriented design

complexity: implications for software defects,” IEEE

Trans. Softw. Eng., vol. 29, no. 4, pp. 297–310, 2003.

[10] A. J. Riel, Object-Oriented Design Heuristics, 1st ed.

Boston, MA, USA: Addison-Wesley Longman

Publishing Co., Inc., 1996.

[11] S. Hassaine, F. Khomh, Y.-G. Guéhenéuc, and S. Hamel,

“IDS: An Immune-Inspired Approach for the Detection

of Software Design Smells,” presented at the Quality of

Information and Communications Technology

(QUATIC), 2010 Seventh International Conference on

the, 2010, pp. 343–348.

[12] E. Figueiredo, C. Sant’Anna, A. Garcia, and C. Lucena,

“Applying and evaluating concern-sensitive design

heuristics,” J. Syst. Softw., vol. 85, no. 2, pp. 227–243,

2012.

[13] M. Fowler, K. Beck, J. Brant, and W. Opdyke,

Refactoring: Improving the Design of Existing Code.

Reading, MA: Addison Wesley, 1999.

[14] W. Brown, R. Malveau, H. McCormick, and T.

Mowbray, AntiPatterns: Refactoring Software,

Architectures, and Projects in Crisis. New York, NY,

USA: Wiley and Sons, 1998.

[15] A. Trifu and R. Marinescu, “Diagnosing design problems

in object oriented systems,” presented at the Reverse

Engineering, 12th Working Conference on, 2005, p. 10

[16] N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. Le

Meur, “DECOR: A Method for the Specification and

Detection of Code and Design Smells,” IEEE Trans.

Softw. Eng., vol. 36, no. 1, pp. 20–36, 2010.

[17] S. Ganesh, T. Sharma, and G. Suryanarayana, “Towards a

Principle-based Classification of Structural Design

Smells,” Journal of Object Technology, vol. 12, no. 2, pp.

1–29, 2013.

[18] S. Girish, S. Ganesh, and S. Tushar, Refactoring for

Software Design Smells - Managing Technical Debt, 1st

ed. Morgan Kaufmann, 2014.

[19] A. Yamashita and L. Moonen, “Do code smells reflect

important maintainability aspects?,” in 2012 28th IEEE

International Conference on Software Maintenance

(ICSM), 2012, pp. 306–315.

[20] A. Lozano, M. Wermelinger, and B. Nuseibeh,

“Assessing the impact of bad smells using historical

information,” presented at the Ninth international

workshop on Principles of software evolution: in

conjunction with the 6th ESEC/FSE joint meeting, 2007,

pp. 31–34.

[21] R. Plösch, J. Bräuer, C. Körner, and M. Saft, “Measuring,

Assessing and Improving Software Quality based on

Object-Oriented Design Principles,” Open Comput. Sci.,

vol. 6, no. 1, 2016.

[22] B. A. Kitchenham and S. L. Pfleeger, “Personal Opinion

Surveys,” in Guide to Advanced Empirical Software

Engineering, F. Shull, J. Singer, and D. I. K. Sjøberg,

Eds. Springer London, 2008, pp. 63–92.

[23] F. Keusch, “How to Increase Response Rates in List-

Based Web Survey Samples,” Soc. Sci. Comput. Rev., p.

894439311409709, 2011.

[24] A. Mayr, R. Plosch, and C. Korner, “A Benchmarking-

Based Model for Technical Debt Calculation,” in

Proceedings of the 14th International Conference on

Quality Software (QSIC 2014), Dallas, Texas, 2014, pp.

305–314.

[25] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B.

Regnell, and A. Wesslén, Experimentation in Software

Engineering. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2012.

[26] E. Smith, R. Loftin, E. Murphy-Hill, C. Bird, and T.

Zimmermann, “Improving developer participation rates in

surveys,” in 2013 6th International Workshop on

Cooperative and Human Aspects of Software Engineering

(CHASE), 2013, pp. 89–92.

[27] J. Braeuer, “Measuring Object-Oriented Design

Principles,” in 2015 30th IEEE/ACM International

Conference on Automated Software Engineering (ASE),

2015, pp. 882–885.

