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Abstract—To measure object-oriented design quality, metric-

based approaches have been established. These have then been 

enhanced by identifying design smells in code. While these 

approaches are useful for identifying hot spots that should be 

refactored, they are still too vague to sufficiently guide software 

developers to implement improvements. This is why our work 

focuses on measuring the compliance of source code with object-

oriented design best practices. These design best practices were 

systematically derived from the literature and can be mapped to 

design principles, which can help reveal fundamental object-

oriented design issues in a software product. Despite the 

successful applications of this approach in industrial and open 

source projects, there is little accepted knowledge about the 

importance of various design best practices. Consequently, this 

paper shows the result of an online survey aimed at identifying 

the importance of 49 design best practices on design quality. In 

total, 214 people participated in the survey, resulting in an 

average of 138 opinions for each practice. Based on these 

opinions, five very important, 21 important, 12 moderately 

important and 11 unimportant design best practices could be 

derived. This information about importance helps managing 

design improvements in a focused way. 

Keywords—design best practices; design principles; design 

quality; software quality. 

I.  INTRODUCTION 

Software products with good object-oriented design are 
flexible, reusable and maintainable [1]. In the past, software 
metrics were used to express the compliance of source code 
with object-oriented design aspects [2], [3]. Nevertheless, it has 
been recognised that metrics are vague for dealing with the 
complexity of design and for driving concrete improvements 
[4]. Based on this cognition, the idea of identifying code or 
design smells in source code has been established and is used 
to find hot spots that threaten the flexibility, reusability and 
maintainability of software products [5]. 

Despite good progress in localising design flaws based on 
the identification of design smells, these design smells are still 
too fine-grained to conclude a design assessment. Hence, a 
more recent approach has been published by Samarthyam et al. 
[6], which picks up the idea of measuring design principles as 
part of a design assessment. This approach is called MIDAS 
and refers to the skills and knowledge of experts who manually 
assess the adherence of design principles. By using this more 

abstract view of design quality, a better understanding of issues 
and problem sources can be achieved. However, to standardise 
these manual investigations, a model for design quality should 
be used that is currently not available [6]. 

In order to bridge this gap of the missing object-oriented 
design quality model, this work follows the approach of 
identifying violations of object-oriented design best practices 
directly in source code. In the remainder of this article, we use 
shorter-term design best practices, while always referring to 
object-oriented design best practices. Generally, design best 
practices allow the reuse of expert knowledge and can 
therefore be applied to guide software designers and 
developers. To find the violations of design best practices, we 
developed a tool called MUSE [7]. MUSE contains a set of 67 
design best practices – design rules – for the programming 
languages Java, C# and C++. Most of the rules cover all three 
programming languages since they are related to object-
oriented concepts rather than language features. 

MUSE has passed various accuracy checks and has been 
applied in industrial as well as open-source projects [7]. Users 
are interested in the measurement results, which are compiled 
as a list of violations of design best practices with an exact 
location for each violation. Nevertheless, up to now, we could 
not recommend which violations should be addressed first 
based on their importance. Consequently, we decided to 
conduct a survey to gather data that allow a more differentiated 
view of the importance of our design best practices. This set of 
67 rules has been reduced to 49, since future work will focus 
on Java, which is covered by this selection of these 49 rules. 

The remainder of this article is structured as follows. In the 
next section, related work is discussed. Then, our novel 
approach for design quality improvement is briefly explained 
before showing the research design in Section IV. An overview 
of the survey is given in Section V. Section VI analyses the 
results and derives the importance of the 49 design best 
practices. Finally, the paper draws a conclusion from the results 
and provides an avenue for future work. 

II. RELATED WORK 

To measure object-oriented design quality, the literature 
distinguishes different approaches. Metric-based approaches 
such as QMOOD [3] and the metric suite provided by 
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Chidamber and Kemerer [2] try to measure design quality by 
means of, e.g., cohesion, coupling and inheritance-related 
metrics. The effort to measure these design aspects is typically 
low. Empirical studies indicate that some of the metrics (e.g., 
inheritance depth, number of methods, coupling between 
objects) are useful for measuring design quality in the sense 
that there is a correlation between the metrics and external 
quality (usually bugs) [8], [9]. Additionally, it is possible to 
aggregate these metrics into an overall quality index as 
proposed by QMOOD and to compare the results of different 
projects or project versions. Nevertheless, metric-based 
approaches fail to support developers since the semantic 
relation between a metric value and source code is difficult to 
grasp. 

Riel coins the term object-oriented design heuristics [10]. 
In his book, he takes a constructive approach and formulates 
design heuristics in a way that a software developer can use 
them as templates when designing or implementing software 
[10]. Riel associates his design heuristics with more general 
language-oriented design topics such as inheritance 
relationships, association relationships and the relationships 
between classes and objects. The design heuristics provided by 
Riel are described with a pattern language, but give no hints on 
the impact of these heuristics on general quality attributes or on 
their importance. 

Another set of approaches tries to identify so-called design 
smells or code smells [5], [11], [12]. The work on design 
smells is influenced by the design heuristics of Riel [10] as 
well as the research on refactoring and anti-patterns by Fowler 
et al. [13] and Brown et al. [14], respectively. These design 
smells, for instance, data clumps or feature envy [13], 
semantically express a design problem and therefore try to 
make it tangible for software developers. From our point of 
view, this is an improvement over metric-based approaches. 
However, typical measuring approaches (e.g., [5], [15]) for 
design smells are also metric-based with the difference of not 
relying on a single metric but on a combination thereof. 

DÉCOR is another smell-based approach that is not based 
on metrics but rather on a method and language that allows to 
specify design smells [16]. The underlying approach provides 
all the necessary steps to define a so-called detection technique. 
Specifically, step three of DÉCOR is the translation of a textual 
bad smell definition into algorithms that can be applied to 
detect it. To validate the method, the authors instantiate 
DÉCOR and test the detection techniques on four bad smells 
[16]. 

Ganesh et al. [17] collect and categorise design smells by 
using a pattern language; in other words, they focus on 
semantically grasping the design problem without providing 
any hints on how to measure design smells [18]. This work 
contains a large number of structural design smells at the 
micro-architecture level with an emphasis on object-oriented 
design principles. In addition to collecting and describing the 
design smells, Ganesh et al. relate them to the object-oriented 
design principles abstraction, encapsulation, modularity and 
hierarchy. 

Focusing on design aspects rather than the mere source 
code level provides a better lever for enhancing software 

quality. While some scientific work investigates the impact of 
code and design smells on the quality attribute maintainability 
[19], little work systematically investigates and validates the 
relation between design smells and (object-oriented) design 
quality in general. Furthermore, there are no systematic 
investigations that try to answer questions related to the 
importance of design best practices or design smells apart from 
focused work in the realm of design metrics. In fact, Lozano et 
al. [20] point out that there is little evidence of the negative 
impact of design smells. 

III. NOVEL APPROACH FOR DESIGN QUALITY IMPROVEMENT 

As mentioned above, the community is missing a reference 
model for design quality [6]. In the long run, our work focuses 
on this gap but using a different approach compared with 
related work in the past. In contrast to using metrics or design 
smells to express the design of software, we are interested in 
understanding the compliance of source code with (fine-
grained) design principles such as information hiding, the 
single responsibility principle or don’t repeat yourself. 
Therefore, it is important to facilitate the understanding of 
design deficiencies at a level more abstract than design smells, 
but not as coarse as that suggested by Ganesh et al. [18], who 
cluster design problems based on abstraction, encapsulation or 
modularisation. 

A list of 32 design principles has been systematically 
identified and important ones have been derived based on a 
survey [21]. Guided by this set of principles, a top-down 
approach was applied to identify and specify design best 
practices related to the design principles. An example of a 
design principle and its related design best practices is shown 
in Figure 1. Based on this example, the information hiding 
principle is affected (threatened) by, e.g., classes that provide 
public fields, methods that return mutable collections or 
methods that could declare an interface instead of a concrete 
class as the return type. While the shown example is just an 
abstract view of measuring design principles by means of 
design best practices, a more elaborated discussion is provided 
in Plösch et al. [21], which explains the underlying meta-model 
and its applicability. 

 

Fig. 1. Design principle and its design best practices 



As another major difference to Ganesh et al., we did not 
stop at the specification level, but also implemented the static 
code analysis tool MUSE that analyses Java, C# or C++ source 
code and finds the violations of these design best practices [7]. 
As already mentioned in the Introduction, this article 
concentrates on Java measures. The resulting MUSE 
measurement represents a list of violations that can be 
uploaded to SonarQube

1
. In SonarQube, the findings are linked 

to the source files where the developer can start investigating 
the identified issues. 

IV. RESEARCH DESIGN – SURVEY RESEARCH 

This section concentrates on the research direction by 
highlighting the research goal of this work and explaining the 
design of the conducted survey. 

A. Research Question 

MUSE can be applied to manage design improvements for 
a software product. However, there remains the limitation that 
users cannot be guided to the most important and critical 
violations. In order to provide a default setting for the 
importance of the design best practices in MUSE and to 
support managers in prioritising improvement actions, we 
derived the following research question at the beginning of the 
investigation: RQ: How important are various design best 
practices for achieving good object-oriented design? 

To answer this question, a broad view of the topic is 
required since object-oriented design is context-dependent and 
gathering many opinions can compensate for the impact of the 
context. In other words, conducting, e.g., a focus group 
discussion with a relatively small set of participants may run 
into the problem of non-generalisable findings. The same 
problems arise for case studies or similar research methods. 
Therefore, we choose a survey-based research approach to 
answer the research question. 

B. Survey Design 

The study objects in this survey are the 49 design best 
practices suitable for Java. Each of these practices has a unique 
name and a description that clarifies the intention and provides 
additional details to understand the design best practice. In 
order to guarantee that the name and description are well 
understood, a pre-test with eight experienced Master’s students 
was conducted. In this pre-test, the students had to interpret the 
name and description of each design best practice by writing a 
code snippet that shows a violation of this design best practice. 
Problems that occurred during this pre-test were collected and 
discussed. As a result, improvements to the name and 
descriptions could be made. Finally, a cross check ensured that 
various notations and terms were consistently used across all 
descriptions. 

After this pre-test, the questionnaire was designed based on 
a guideline [22] and the recommendations given in [23]. The 
questionnaire consists of four question blocks and the end 
page: 

                                                           
1 https://www.sonarqube.org/. 

Personal Information: The first question block asked the 
participants about the affiliation, the job position and for how 
many years they have been working in the current job position.  

Background and Experience: The second question block 
gathered information on programming skills and expertise in 
object-oriented software design. Therefore, one question asked 
about the business domain in which the participants are 
working and another about the level of experience in Java, C#, 
and C++. To collect data about the design expertise, the 
participants had to self-assess their design expertise and how 
they learned object-oriented design. 

Assessment Blocks: Each assessment block allows 
assessing the importance of seven randomly chosen design best 
practices with a five-point scale from 1 (very unimportant) to 5 
(very important). The answers were mandatory, meaning that it 
was not possible to skip a design best practice. After assessing 
the first block, the questionnaire continued with the next block 
of seven randomly chosen design best practices and so forth. 

After each individual assessment block, we explicitly 
highlighted the current progress and showed appreciation for 
the already invested effort. In addition, we motivated the 
participants to continue. If the participant had no more time, it 
was possible to directly go to the open question block close to 
the end of the survey. By providing this kind of freedom and 
some distraction from the monotonous task of assessing the 
importance, we tried to keep the motivation high to get as 
many assessments as possible. 

Open Question Block: In this block, the questionnaire 
invited the participants to note object-oriented design aspects 
not covered by the questionnaire. Additionally, feedback could 
be posted here. 

 End of Survey: Finally, the last page notified about the 
successful submission of the questionnaire. Additionally, the 
participants were invited to subscribe for a summary of the 
survey results. 

C. Participant Recruitment 

We followed two approaches for recruiting participants. 
First, we sent personalised emails to a list of people who we 
know have software engineering skills in research or practice 
or who are leaders in software developing organisations. This 
survey invitation, including the survey link and access token, 
contained the request to distribute the participation details 
among colleagues and employees. Second, we recruited people 
from social networking and business platforms such as 
LinkedIn, XING and ResearchGate. For this purpose, a generic 
post was published in designated discussion groups and forums 
on these platforms. These posts explained the purpose of the 
survey and the benefits a participant can get in return. 
Additionally, the survey link and an access token were 
provided. 

V. SURVEY OVERVIEW 

In this section, an overview of the survey sample is 
provided by discussing the drop-out rate, showing 
demographics and presenting the software engineering and oo-
programming skills of the participants. 



 

Fig. 2. Drop-outs among question blocks 

 

 

Fig. 3. Distribution of affiliations 

 

A. General Overview 

The survey was available from 26
th

 October until 21
st
 

November 2016. In total, 294 individuals interacted with the 
survey, meaning that they followed the invitation link and hit 
the start button on the welcome page. Then, there was a drop-
out of 28 people on the personal information page and 17 
people on the background & experience page. A large 
proportion (35) left during the assessment of the first seven 
design best practices, resulting in 214 successfully finished 
questionnaires. 

To our surprise, 52.9% of the 214 participants were 
recruited by our posts on the social networking platforms. 
Although the posts were placed in topic-related discussion 
groups and forums, the number of people who were willing to 
contribute in this survey is high, at least compared with 
previous surveys we conducted. 

As mentioned above, the design of the survey provided 
some degree of freedom for the participants and they could 
decide to end the survey after each assessment block. The 
analysis of the drop-out rate regarding this degree of freedom is 
shown in Figure 2. According to the graph and as mentioned 
before, 214 participants expressed their opinion for at least 
seven design best practices; afterwards, 23 quit the survey. The 
drop-out rates between the assessment of the second and third 
as well as the fourth and fifth blocks are conspicuous but 
explainable. At these points, the questionnaire presented an 
image and a short text that showed appreciation for the already 
invested effort. In addition, the participants had the chance to 
skip the rest of the survey at these stages. Nevertheless, 86 
participants finished the entire survey, meaning that they 
continued until the end of the survey. 

B. Personal Information 

The first question in the personal information block asked 
about the current affiliation of the participants. Figure 3 shows 
the distribution of the participants among academic 
organisations, self-employment and companies differentiated 
by the number of employees. 

 

According to this diagram, there is a well-balanced 
distribution between all affiliations, ranging from 13 self-
employed participants to 44 participants working at a company 
with more than 1,000 employees. However, there is strong 
participation from industry with 176 people with a practical 
point of view rather than a theoretical one. The three people 
who selected the option other are currently not working or 
employed at a governmental organisation with more than 
25,000 clerks. 

The distribution of the participants among the job roles 
shows that many software engineers and architects expressed 
their opinion. In more detail, 93 software engineers and 45 
software architects – together they represent 64% of the total 
quantity – successfully completed the survey. Figure 4 depicts 
the number of participants for each job position. The 12 
participants that selected the option other noted the following 
roles: trainer, teaching, technical director, managing director 
(technical), CTO, director of institute, founder, tech lead, 
software craftsman and systems engineer. 

C. Background and Experience 

The second question block focused on background 
information and the expertise of the participants in 
programming languages. The analysis of the domains in which 
the participants are working highlights two disciplines leading 
the field. The top business domain is the development of 
web/service-oriented systems (66) followed by business 

 

Fig. 4. Distribution of job roles 

 



 

Fig. 5.  Distribution of business domains 

 

 

Fig. 6.  Accumulated programming skills in Java, C# and C++ 

 

information systems (56). Figure 5 shows the distribution 
among the other domains. For the sake of completeness, the 16 
participants who selected the option other are developing user 
interfaces, desktop applications, CAD/CAM systems, human–
computer interaction, language implementation, information 
systems, virtual machines, compilers, GUI systems, finance, 
CAD systems, healthcare, nuclear reactors and manufacturing 
applications. 

In order to filter the answers, we asked the participants to 
assess their self-appraisal regarding their expertise in a 
particular object-oriented programming language. The data 
analysis shows that many participants have top and good 
experience in Java (125), while C# (80) and C/C++ (84) are 
less dominant. Nevertheless, there is still a representative group 
of C# and C/C++ engineers with top and good experience 
therein. For each participant, we consider the highest 
experience level regardless of the programming language. As 
shown there, one participant had no experience in any of the 
three languages but good experience in object-oriented PHP. 
Figure 6 depicts the total number of participants with top, 
good, moderate, some or no experience itemised by 
programming language. 

In addition to the programming languages, a question asked 
about the self-appraisal regarding object-oriented programming 
skills. Interestingly, a strong majority assessed this aspect with 
good or top expertise. This insight strengthened the 
representation of our database and addressed the threat to 
internal validity as we can show that the participants are 
familiar with object-oriented concepts and can assess design 
best practices at least to some degree. 

VI. IMPORTANCE OF DESIGN BEST PRACTICES 

A. Individual Result 

Considering the opinions of all 214 participants, we 
calculated an average assessment for all 49 design best 
practices regarding their importance. This calculation uses an 
equally increasing weight from very unimportant to very 
important, meaning that the assessment of very unimportant is 
weighted with 1 and very important with 5. As a high-level 
result, we can show that five rules are considered as very 
important, 21 as important, 12 as moderately important and 11 
as unimportant. The exact details are depicted in Table I. 

Additionally, this table shows the standard deviation and 
skew of answers for each design best practice. The standard 
deviation ranges from 0.79 to 1.24. A low standard deviation 
means that the participants agree in their opinion, while a high 
value stands for disagreement. The skew – as an indicator of 
the asymmetry of the answers about the mean – shows the 
tendency towards either very important or very unimportant. 
For this discussion, the skew is multiplied by -1 in order to 
better express its meaning. Thus, a positive value expresses an 
important design best practice in contrast to a negative value 
that represents a tendency towards unimportance. 

The average of all opinions for one design best practice and 
the standard deviation were used to calculate an importance 
range for (almost) each design best practice. The only rule that 
does not provide a range is AvoidDuplicates because there is a 
general agreement on its very high importance. For all the other 
design best practices, the range is shown in the last column of 
Table I and this provides some degree of freedom when using 
the rules (e.g. assessing software design). Hints for up- or 
downgrading various design best practices are discussed below. 

B. Analysis of Border Cases 

From a broader perspective, 33 rules are classified as high 
and moderate. Thus, it should be discussed whether candidates 
are close crossing a border. Figure 7 shows the distribution of 
rule assessments within the high range. According to this 
figure, the three rules DocumentInterfaces, 
AvoidLongParameterLists and UseInterfacesIfPossible, which 
are marked with an h↑ importance in Table I, have an average 
assessment of 3.96 and are very close to the upper boundary. 
Consequently, these three rules are good candidates for a rise to 
very high. 

 

 

TABLE I.   

 

Fig. 7. Accumulated programming skills in Java, C# and C++ 

 



 

Fig. 8. Accumulated programming skills in Java, C# and C++ 

 

TABLE II.  DESIGN BEST PRACTICES ORDERED BY IMPORTANCE 
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AvoidDuplicates 4.42 vh 0.79 1.74 vh 

AvoidUsingSubtypesInSuper. 4.27 vh 0.94 1.11 h-vh 

AvoidPackageCycles 4.27 vh 0.94 1.43 h-vh 

AvoidCommandsInQueryM. 4.23 vh 0.93 0.94 h-vh 

AvoidPublicFields 4.09 vh 1.09 1.22 h-vh 

DocumentInterfaces 3.96 h↑ 1.07 0.95 m-vh 

AvoidLongParameterLists 3.96 h↑ 0.85 0.82 h-vh 

UseInterfacesIfPossible 3.96 h↑ 1.08 0.99 m-vh 

AvoidStronglyCoupledPack. 3.81 h 0.92 0.41 m-vh 

AvoidNonCohesiveImpleme. 3.80 h 1.05 0.78 m-vh 

AvoidUnusedClasses 3.80 h 1.06 0.76 m-vh 

DontReturnUninvolvedData 3.80 h 0.92 0.72 m-vh 

AvoidNonCohesivePackages 3.79 h 0.93 0.51 m-vh 

DocumentPublicMethods 3.77 h 1.11 0.89 m-vh 

UseCompositionNotInherita. 3.76 h 1.08 0.60 m-vh 

DocumentPublicClasses 3.76 h 1.12 0.68 m-vh 

AvoidPublicStaticFields 3.74 h 1.15 0.63 m-vh 

AvoidDiamondInheritanceSt. 3.68 h 0.95 0.45 m-vh 

AvoidLongMethods 3.64 h 1.12 0.44 m-vh 

AvoidSimilarNamesForDiff. 3.64 h 1.04 0.35 m-vh 

AvoidUnusedAbstractions 3.63 h 1.19 0.61 m-vh 

CheckUnsuitableFunctionality 3.61 h 0.95 0.54 m-vh 

AvoidSimilarAbstractions 3.60 h 0.94 0.49 m-vh 

DocumentPackages 3.58 h↓ 1.19 0.55 l-vh 

UseInterfacesAsReturnType 3.54 h↓ 1.20 0.40 l-vh 

AvoidUncheckedParameter. 3.52 h↓ 1.02 0.45 h-vh 

AvoidSimilarNamesForSame. 3.49 m↑ 1.03 0.39 m-h 

CheckObjectInstantiatiosByN. 3.45 m↑ 1.07 0.26 l-h 

AvoidRepetitionOfPackage. 3.44 m↑ 1.05 0.48 l-h 

ProvideInterfaceForClass 3.34 m 1.12 0.33 l-h 

AvoidRuntimeTypeIdentifica. 3.32 m 1.07 0.49 l-h 

AvoidDirectObjectInstantiati. 3.32 m 1.07 0.41 l-h 

CheckUnusedSupertypes 3.32 m 0.91 0.28 l-h 

AbstractPackagesShouldNot. 3.31 m 1.03 0.33 l-h 

DontReturnMutableCollectio. 3.31 m 1.08 0.23 l-h 

AvoidMassiveCommentsInC. 3.24 m 1.20 0.19 l-h 

AvoidReturningDataFromCo. 3.14 m 1.05 0.21 l-h 

UseAbstractions 3.02 m↓ 1.24 0.12 vl-h 

CheckUsageOfNonFullyQual. 2.97 l 0.96 0.09 l-m 

AvoidManySetter 2.96 l 1.05 -0.24 vl-m 

AvoidHighNumberOfSubpkg. 2.92 l 0.96 0.07 vl-m 

AvoidConcretePackage 2.92 l 0.90 0.07 vl-m 

AvoidSettersForHeavilyUsed. 2.86 l 1.16 -0.14 vl-m 

AvoidAbstractClassesWithO. 2.85 l 1.07 -0.17 vl-m 

DontInstantiateImplementatio. 2.85 l 1.08 -0.20 vl-m 

AvoidManyGetters 2.68 l 1.10 -0.43 vl-m 

AvoidProtectedFields 2.67 l 1.11 -0.39 vl-m 

CheckDegradedPackageStru. 2.62 l 0.94 -0.12 vl-m 

AvoidManyTinyMethods 2.60 l 1.02 -0.50 vl-m 
vh – very high, h – high, m – moderate, l – low, vl – very low 

 

After this group of three rules, there is a gap to the next 
design best practices when reading Figure 7 from left to right. 
These design best practices are close to the centre of the 
assessment scale and should adhere to the high importance 
level. Being close to the centre means that their assessment 
deviates by +/-0.15 points. In other words, rules below 3.60 are 
candidates for a downgrade to moderate. According to Figure 7 
and indicated by h↓ in Table I, the three rules Document-
Packages, UseInterfacesAsReturnType and AvoidUnchecked-
ParametersOfSetters could have a moderate importance level. 

Similar to the discussion on design best practices within the 
high range, three candidates within the moderate range could 
also rise to high. More specifically, the rules 
AvoidSimilarNamesForSameDesignElements, CheckObject-
Instantiations and AvoidRepetitionOfPackageNamesOnAPath 
have an average weight above 3.40 as depicted on the scale in 
Figure 8 and indicated with m↑ in Table I. On the opposite 
side, only UseAbstractions represents a candidate for the low 
importance level. The remaining moderate design best 
practices are close to the centre when checking the +/-0.15-
point deviation from 3.25. 

C. Application for Design Improvement 

Given these findings, it is now possible to guide software 
developers or designers when analysing MUSE measurements. 
Hence, those violations of design best practices considered to 
have very high importance on design quality should be 
addressed before investing effort into violations of design best 
practices with lower importance. Consequently, this supports 
decision making and ensures efficient design quality 
improvement from an empirical point of view. 

In addition, the data from the survey help configure the 
importance of design best practices by providing a reasonable 
range within which to act. Depending on the context, a 
development team might decide not to use the standard value 
given in the column Default Importance in Table I. From the 
survey data, we can then help developers by providing a 
reasonable range that should be used; see the column Range in 
Table I. For example, if the project team tries to enforce proper 
documentation, then an importance level of high for the design 
best practice DocumentPublicClasses might not be demanding 
enough and could therefore be raised to the importance of very 
high. On the other hand, it is not advisable to choose low or 
medium for this rule according to our survey data regardless of 
the perceived importance of the development team. 

An additional value of the importance level for all design 
best practices is the adjustability of design quality assessment 
approaches such as calculating design debt or a quality index. 
Therefore, our proposed benchmarking-based model for 
technical debt can be applied to derive design debt based on the 
MUSE rules [24]. To enhance this model, the importance level 
of each rule can now better clarify the non-remediation costs of 



each rule, which is an important input factor for the calculation. 
Finally, the calculated design debt is useful for developers, but 
it seems especially useful for managers to understand the cost 
and revenue benefits of refactoring parts, which might not be 
seen as a waste of effort but rather an investment in future 
development. 

VII. THREATS TO VALIDITY 

Threats to internal validity are influences that can affect the 
independent variable with respect to causality [25]. Thus, one 
issue is understanding the presented design best practices. To 
ensure a solid description and name for each rule, a pre-test 
was conducted. As a consequence of this pre-test, misleading 
descriptions were refined and names were adapted. Hence, it 
can be argued that the design best practices are well understood 
based on the refinements. 

Another confounding variable is the perception of the 
participants while answering the questions. In other words, the 
participants’ opinion about the practical implementation or 
relevance of design best practices could have influenced the 
estimation. In order to focus attention on only considering the 
general importance of a design best practice, a simple check-
box question highlighted the purpose of the survey; the 
participant could not continue without marking the “I 
understood'' check box. 

Threats to external validity are conditions that limit the 
ability to generalise the results of the investigation [25]. We 
explicitly choose an open survey research method to foster the 
generalisability of the results. Facts that supported the decision 
were the low complexity of the questions and the low 
processing time, which are critical success factors [26]. 
Consequently, the survey could be distributed among many 
people, resulting in a good response rate. The analysis of 
demographic aspects shows that the result is derived from a 
diverse but experienced sample. This includes various business 
domains and job roles. All in all, the strong participation of 
practitioners could be achieved, which strengthens the ability to 
generalise the findings. 

This discussion should consider the implications for 
generalising the result to other oo-programming languages. 
More specifically, we currently know a set of 67 design best 
practices (see Plösch et al. [7]) containing rules for Java, C++ 
and C#. Consequently, the general findings can be transferred 
to other programming languages but with special care; for C++, 
additional design features such as multiple inheritance or 
macros are available. For C#, there are not as many differences 
compared with Java. 

VIII. CONCLUSION AND FUTURE WORK 

While previous research on enhancing object-oriented 
software design has focused on carefully identifying (smelly) 
source code spots characterised by design metrics, there is little 
evidence on the importance of individual design best practices. 
In this study, a survey was conducted in order to investigate 
this aspect. Based on the opinions of 214 participants from 
different software engineering fields, we derived the 

importance of 49 measures; five design best practices were 
considered to be of very high importance. 

In fact, avoiding duplicates (code clones), the use of 
subtypes in supertypes, package cycles, commands in query 
methods and public fields were the design concerns considered 
to be very important. In other words, following these design 
rules in practice can enhance and foster the flexibility, 
reusability and maintainability of a software product. Although 
it is possible to oversee the compliance of these five aspects by 
using a checklist or cheat sheet, monitoring the evolution of the 
software design becomes challenging when additionally 
considering at least the 21 important rules identified from the 
survey. 

MUSE was developed to automatically identify violations 
of design best practices in source code [7]. The provided 
measurement data can be used to discuss upcoming design 
decisions and control enhancements. These tasks are now 
supported by the contribution of this survey because software 
engineers and architects can concentrate on very important (or 
important) design best practices first, knowing that the 
professional knowledge of a large number of survey 
participants leads to the categorisation of these design best 
practices to be of high or very high importance. 

Having a set of 49 measurable design best practices for 
Java is a valuable support for practitioners in software 
engineering. Nevertheless, the completeness of our design best 
practice collection is not known. Consequently, further work 
should focus on finding missing design best practices. 

Strengthened by the comments from the survey, we will 
continue to investigate aspects for measuring and assessing 
design principles such as the information hiding principle, 
open-close principle or single responsibility principle. 
Software engineers and architects know design principles and 
are concerned about them. However, we are not aware of any 
method or tool that allows measuring design principles in 
source code. Therefore, we defined a design quality model as 
briefly addressed in Section III. First insights into this approach 
are given in Bräuer [27] and Plösch et al. [21], but a 
comprehensive validation is missing. 

For this purpose, we want to understand the coverage of 
design principles due to design best practices as depicted in 
Figure I. The importance data gained from this survey are a 
first input. However, for a deeper understanding, we are 
currently setting up a number of focus groups to identify the 
completeness of our design best practices with regard to the 
design principles. Moreover, this investigation should reveal 
white spots in measuring design principles and object-oriented 
design in general. 
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