

Figure 1. Drop-outs among question blocks

Survey Report:Importance of

Object-Oriented Design Best Practices

Johannes Bräuer and Reinhold Plösch

Department of Business Informatics – Software Engineering

Johannes Kepler University Linz

Linz, Austria

johannes.braeuer@jku.at, reinhold.ploesch@jku.at

Abstract—This report describes the major results of our

survey related to the importance of design best practices. It first

shows a general overview of the survey including some

demographic aspects. Afterwards, Table I represents the main

result; namely, the design best practices order by their derived

importance. The importance is calculated based on the opinions

of the participants who were randomly assigned to the design

best practice. In average, 138 participants have expressed their

opinion for one design best practice. The report continues with

an analysis of the open question. Finally, a conclusion and an

outlook for future work are given.

Keywords— design best practices; design quality; design rules;

I. RESULT

A. General Overview

The survey was available from 26
th
 of October until 21

st
 of

November 2016. In total, 294 individuals interacted with the
survey meaning that the followed the invitation link and hit the
start button on the welcome page. Then there was a drop-out of
28 people on the personal information page and 17 people on
the background & experience page. A large portion (35) left
during the assessment of the first 7 design best practices
resulting in 214 successfully finished questionnaires.

To our surprise, 52.9% of the 214 participants were
acquired by posts in social networking platforms. Of course,
the posts where placed in topic-related discussion groups and
forums, but the number of people who were willing to
contribute in this survey is high, compared to previous surveys
we conducted.

The design of the survey provided some degree of freedom
for the participants and they could decide to end the survey
after each assessment block. The analysis of the drop-out rate
regarding this degree of freedom is shown in Figure 1.
According to the figure and mentioned before, 214 participants
expressed their opinion for at least 7 design best practices;
afterwards, 23 quit the survey. The drop-out rates between the
assessment of the second and third as well as the fourth and
fifth block are conspicuous but explainable. At these points the
questionnaire presented an image and a short text that showed
appreciation for the already invested effort. Besides, the
participants had the chance to skip the rest of the survey at
these stages. Astonishingly, 86 participants finished the entire
survey meaning that they continued until the end of the survey.

Reasons for the high rate of completely finished surveys
could come from three aspects. First, the participants were
interested in the topic and eager to learn more about object-
oriented design practices. Second, the length and duration of
assessing a block of design best practices were adequately
defined and the participants did not get bored. Third, the idea
of giving the participant the power of finishing the survey
based on their decision increased the eager to finish the entire
questionnaire. While these three reasons cannot be further
investigated, it is definitely an interesting aspect concerning
qualitative and quantitative research methods.

B. Personal Information

The first question in this block asked about the current
affiliation of the participant. Figure 2 shows the distribution of
participants from academic organizations, self-employment,
and companies differentiated by the number of employees.

According to this diagram, there is a well-balanced
distribution between all affiliations ranging from 10 self-
employed participants to 33 participants working at a company
with more than 1.000 employees. However, there is a strong
participation from industry with 176 opinions with a practical
point of view rather than a theoretical one.

Figure 2. Affiliations of participants

 The distribution of participants among the job roles shows
that many software engineers and architects expressed their
opinion. In more detail, 93 software engineers and 45 software
architects – which are representing 64% of the total quantity –
successfully finished the survey. Figure 3 depicts the number
of participants for each job role. The twelve participants that
selected the option other noted following roles: Trainer,
Teaching, Technical Director, Managing Director (technical),
CTO, Director of Institute, Founder, Tech Lead, Software
Craftsman, Technical Manager, Managing Director, and
Systems Engineer.

Figure 3. Distribution of job roles

C. Background and Experience

The second question block focused on background
information and expertise of the participant in programming
languages. The analysis of the domains – in which the
participants are working in – highlights two disciplines leading
the field. The top business domain is the development of
web/service-oriented systems (66) followed by business
information systems (56). Figure 4 shows the distribution
among the other domains. For the sake of completeness, the
twelve participants that selected the option other noted
following business domains: User Interface, Desktop
Applications, CAD/CAM, Human Computer Interaction,
Language Implementation, Desktop Applications, Information
Systems, Virtual Machines, Tools for Desktop Systems,
Compilers, GUI Systems, Finance, CAD System, Healthcare,
Nuclear Reactors, Manufacturing Applications.

Figure 2. Distribution of business domains

In order to filter the answers and to conduct comparisons
among programming languages, we asked the participants to
assess their self-appraisal regarding the expertise in a particular
object-oriented programming language. The data analysis
shows that many participants have top and good experience in
Java (125) while C# (80) and C/C++ (84) are less dominant.
Nevertheless, there is still a representative group of C# and
C/C++ folks with top and good experience therein. Typically,
participants have e.g. a top experience in Java and a moderate
experience in C++, Figure 5 depicts the experience of the
participants. For each participant we consider the highest
experience level given regardless of the programing language.

Figure 3. Accumulated programming skills in Java, C# and C++

In addition to the programming languages, a question asked
about the self-appraisal regarding object-oriented programming
skills. Interestingly, a strong majority assessed this aspect with
good or top expertise. The exact distribution of the self-
appraisals is shown in Figure 6. This analysis strengthened the
representation of our data base and addresses the threat to
internal validity as we can show that the participants are
familiar with object-oriented concepts and can assess object-
oriented design best practices at least to some degree.

Finally, the last question in this block focused on the
education of object-oriented programming and software design.
While the education at universities – or higher education –

Figure 4. Expertise in oo-programming

plays an important role in teaching oo-programming, almost
the same amount of participants said that self-study is another
way of gaining skills in this topic. The third place is occupied
by on-the-job trainings followed by code review sessions with
colleagues. At the end of this list are dedicated workshops.

D. Design Best Practices in Depth

Considering the opinions of all 214 participants, we
calculated an average assessment for all 49 design best
practices regarding their importance. This calculation uses an
equally increasing weight from very unimportant to very
important meaning that the assessment of very unimportant is
weighted with 1 and very important with 5. As a result, we can
show that 5 rules are considered as very important, 21 as
important, 12 as moderate important and 11 as unimportant.
The exact details are depicted in Table I.

Additionally, this table shows the standard deviation and
skew of opinions for each design best practice. The standard
deviation ranges from 0.79 to 1.24. A low standard deviation
means that the participants agree in their opinions, while a high
value stands for disagreement. The skew – as an indicator for
the asymmetry of the answers about the mean – shows the
tendency to either very important or very unimportant. For this
discussion, the skew is multiplied with -1 in order to better
express its meaning. Thus, a positive value expresses an
important design best practice, while a negative value
represents a tendency to unimportance.

The average of all opinions for one design best practice and
the standard deviation were used to calculate an importance
range for (almost) each design best practice. The only rule that
does not provide a range is AvoidDuplicates because there is a
general agreement on its very high importance. For all the
others, the range is shown in the last column of Table I and
provides some degree of freedom when using the rules, for
instance, to assess a software design. Hints for up- or down
grading various design best practices are discussed below.

TABLE I.DESIGN BEST PRACTICES ORDERED BY IMPORTANCE

A
v

er
a

g
e

Im
p

o
rt

a
n

ce

S
ta

n
d

a
rd

D
ev

ia
ti

o
n

S
k

ew
 *

 (
-1

)

R
a

n
g

e

AvoidDuplicates 4.42 vh 0.79 1.74 vh

AvoidUsingSubtypesInSuper. 4.27 vh 0.94 1.11 h - vh

AvoidPackageCycles 4.27 vh 0.94 1.43 h - vh

AvoidCommandsInQueryM. 4.23 vh 0.93 0.94 h - vh

AvoidPublicFields 4.09 vh 1.09 1.22 h - vh

DocumentInterfaces 3.96 h 1.07 0.95 m - vh

AvoidLongParameterLists 3.96 h 0.85 0.82 h - vh

UseInterfacesIfPossible 3.96 h 1.08 0.99 m - vh

AvoidStronglyCoupledPack. 3.81 h 0.92 0.41 m - vh

AvoidNonCohesiveImpleme. 3.80 h 1.05 0.78 m - vh

AvoidUnusedClasses 3.80 h 1.06 0.76 m - vh

DontReturnUninvolvedData 3.80 h 0.92 0.72 m - vh

AvoidNonCohesivePackages 3.79 h 0.93 0.51 m - vh

DocumentPublicMethods 3.77 h 1.11 0.89 m - vh

UseCompositionNotInherita. 3.76 h 1.08 0.60 m - vh

DocumentPublicClasses 3.76 h 1.12 0.68 m - vh

AvoidPublicStaticFields 3.74 h 1.15 0.63 m - vh

AvoidDiamondInheritanceSt. 3.68 h 0.95 0.45 m - vh

AvoidLongMethods 3.64 h 1.12 0.44 m - vh

AvoidSimilarNamesForDiff. 3.64 h 1.04 0.35 m - vh

AvoidUnusedAbstractions 3.63 h 1.19 0.61 m - vh

CheckUnsuitableFunctionality 3.61 h 0.95 0.54 m - vh

AvoidSimilarAbstractions 3.60 h 0.94 0.49 m - vh

DocumentPackages 3.58 h 1.19 0.55 l - vh

UseInterfacesAsReturnType 3.54 h 1.20 0.40 l - vh

AvoidUncheckedParameter. 3.52 h 1.02 0.45 h - vh

AvoidSimilarNamesForSame. 3.49 m 1.03 0.39 m - h

CheckObjectInstantiatiosByN. 3.45 m 1.07 0.26 l - h

AvoidRepetitionOfPackage. 3.44 m 1.05 0.48 l - h

ProvideInterfaceForClass 3.34 m 1.12 0.33 l - h

AvoidRuntimeTypeIdentifica. 3.32 m 1.07 0.49 l - h

AvoidDirectObjectInstantiati. 3.32 m 1.07 0.41 l - h

CheckUnusedSupertypes 3.32 m 0.91 0.28 l - h

AbstractPackagesShouldNot. 3.31 m 1.03 0.33 l - h

DontReturnMutableCollectio. 3.31 m 1.08 0.23 l - h

AvoidMassiveCommentsInC. 3.24 m 1.20 0.19 l - h

AvoidReturningDataFromCo. 3.14 m 1.05 0.21 l - h

UseAbstractions 3.02 m 1.24 0.12 vl - h

CheckUsageOfNonFullyQual. 2.97 l 0.96 0.09 l - m

AvoidManySetter 2.96 l 1.05 -0.24 vl - m

AvoidHighNumberOfSetters 2.92 l 0.96 0.07 vl - m

AvoidConcretePackage 2.92 l 0.90 0.07 vl - m

AvoidSettersForHeavilyUsed. 2.86 l 1.16 -0.14 vl - m

AvoidAbstractClassesWithO. 2.85 l 1.07 -0.17 vl - m

DontInstantiateImplementatio. 2.85 l 1.08 -0.20 vl - m

AvoidManyGetters 2.68 l 1.10 -0.43 vl - m

AvoidProtectedFields 2.67 l 1.11 -0.39 vl - m

CheckDegradedPackageStru. 2.62 l 0.94 -0.12 vl - m

AvoidManyTinyMethods 2.60 l 1.02 -0.50 vl - m

E. Qualitative Analysis of Open Question

The last question of the survey was an open and optional

question asking about object-oriented design aspects that are

not covered by the questionnaire. In total, 47 participants used

this question to communicate remarks and comments. For

analyzing this open question, we first checked the answers for

their meaningfulness and then applied qualitative content

analysis techniques proposed by Mayring [1]. Thus, we

conducted an inductive category development while working

through the answers. The derived categories that were used to

code all answers are shown below:

 Design Principle in a broader sense

 Design Principle in a narrow sense

 SOLID

 Context dependent

 Testing related

 Suggestion for improvement

In three answers, there is a reference to design principles in
a broader sense like abstraction or encapsulation. One
participant mentioned that abstraction is well covered in the
questionnaire while a second answer uses the principle of
encapsulation for a justification of a statement.

Next to the design principles in a broader sense,
participants also mentioned design principles in a narrow sense
as well as the SOLID principles. Design principles in a narrow
sense are more specific and provide good guidance for building
high-quality software design [2], [3]. (For more details on this
kind of principles, we lengthy discussed the term and its
distinction to design principles in a broader sense in Plösch et
al. [4].) The acronym of SOLID stands for five specifically
selected design principles that are the: single responsibility,
open/closed, Liskov substitution, interface segregation, and
dependency inversion principle.

In total, 12 people mentioned either design principles in a
narrow sense or SOLID in their answer. Some of these remarks
link our design best practices to design principles and express
the coverage thereof. For example, one participant was missing
questions related to the open/closed principle and another
argues that SOLID is not entirely covered. Despite missing
suggestions for improving the coverage of the design principles
with additional design best practices, the comments are a good
indicator for showing the awareness of design principles within
the software engineering community.

Since object-oriented design is per-se context dependent, a
few participants struggled with assessing the importance for
various design best practices. In fact, 6 answers refer to the
difficulty to assess the importance of some practices in this
way or that way dependent on the context or purpose of the
system. Besides, 7 participants mentioned that testing aspects
are missing in the survey. It is interesting to see that testing
plays nowadays such an important role in software engineering
so that it is worth to get mentioned in an oo-design matter. For
the sack of completeness, a couple of participants provided
suggestions for improvements that will be considered in future
work.

II. CONCLUSION AND FUTURE WORK

This survey provides a good understanding of the
importance of design best practices we use in our measuring
framework MUSE [5]. Based on that result, we will continue to
investigate aspects of measuring and assessing design
principles due to rule violations. First insights in this research
question are proposed in Plösch et al. [4] and Bräuer [6], but a
comprehensive validation is still missing.

In order to reveal results regarding the challenge of
measuring object-oriented design principles, we are currently
planning an investigation based on the focus group research
method. This group discussion is conducted remotely, and
requires approximately three hours over a time period of three
weeks. If you are interested in being part of this focus group,
please do not hesitate to contact the authors.

III. REFERENCES

[1] P. Mayring, “Qualitative Inhaltsanalyse,” in Handbuch

Qualitative Forschung in der Psychologie, G. Mey and

K. Mruck, Eds. VS Verlag für Sozialwissenschaften,

2010, pp. 601–613.

[2] J. Dooley, “Object-Oriented Design Principles,” in

Software Development and Professional Practice,

Apress, 2011, pp. 115–136.

[3] T. Sharma, G. Samarthyam, and G. Suryanarayana,

“Applying Design Principles in Practice,” in Proceedings

of the 8th India Software Engineering Conference, New

York, US, 2015, pp. 200–201.

[4] R. Plösch, J. Bräuer, C. Körner, and M. Saft, “Measuring,

Assessing and Improving Software Quality based on

Object-Oriented Design Principles,” accepted for

publication in Open Computer Science Journal (Nov.

2016).

[5] R. Plösch, J. Bräuer, C. Körner, and M. Saft, “MUSE -

Framework for Measuring Object-Oriented Design,” J.

Object Technol., vol. 15, no. 4, p. 2:1-29, Aug. 2016.

[6] J. Bräuer, “Measuring Object-Oriented Design

Principles,” in 30th IEEE/ACM International Conference

on Automated Software Engineering (ASE), Lincoln, US,

2015, pp. 882–885.

