

Summary of Design Principles Survey
Reinhold Ploesch and Johannes Braeuer

Department of Business Informatics – Software Engineering

Johannes Kepler University Linz, Austria

reinhold.ploesch@jku.at, johannes.braeuer@jku.at

This summary describes the major results of our design

principles survey. It first shows an overview of the survey design

including some demographical aspects of the participants.

Afterwards, a ranking of the 15 design principles is depicted. This

ranking assembles all rankings made by the participants. The

summary continues with a discussion of three design principles that

are considered as missing by survey participants. Finally, a

conclusion and an outlook for future work are given.

I. SURVEY DESIGN AND OVERVIEW

The survey was available online from March 16
th

 to April
20

th
. During this time 104 participants completed the survey

while 37 questionnaires were started but not finished
successfully. This set of unfinished surveys is ignored in the
analysis.

By analysing the demographical aspects of the participants,
the result shows that more than 50 per cent of the participants
are employed in a company with more than 1000 employees. In
more detail: 2 from company < 10 employees, 13 from
company < 50 employees, 12 from company < 250 employees,
12 from company < 1000 employees, 54 from company > 1000
employees, and 11 from an academic organization.

Next to the affiliation, the question regarding the current job
role indicates that many software architects and developers
were participating. To be more exact, 12 project managers, 4
quality managers, 37 software architects, 62 software
developers, 7 software testers, 2 software support engineer, 22
consultants, and 12 scientists completed the questionnaire
(multiple job roles were allowed).

Last but not least, the analysis of the engineering domains
highlights a suitable distribution except of mobile systems with
only one participant. All in all, 23 participants are working on
web/service oriented systems, 14 on embedded systems, 17 on
development tools, 25 on business information systems, 1 on
mobile systems, 8 on expert and knowledge based systems and
16 on a system from another (unspecified) domain.

II. FINAL RANKING

Table I shows the final result that composes all rankings.

The weighted rank next to each design principle is calculated

based on the rank given by a participant. In other words, when

a design principle was ranked on the first place, ten points

were added to its weighted rank; nine points were added for

rank two, eight points for rank three and so on.

Based on that final ranking, we tried to figure out whether

different opinions exist within different job positions, domains

or programming languages. Therefore, the data was clustered

according to these viewpoints and the clusters were compared

with the composed ranking. As a conclusion, no ranking

showed a significant difference.

TABLE I. RANKING OF DESIGN PRINCIPLES

Design Principle

weighted

Ranks

Single Responsibility Principle 695

Separation of Concern Principle 647

Information Hiding Principle 611

Don't Repeat Yourself Principle 535

Open Closed Principle 459

Acyclic Dependency Principle 384

Interface Segregation Principle 378

Liskov Substitution Principle 365

Self-Documentation Principle 332

Favour Composition over Inheritance Principle 326

Interface Separability 295

Stable Dependencies Principle 195

Law of Demeter 188

Command Query Separation 174

Common Closure Principle 136

III. MISSING DESIGN PRINCIPLES

The survey was also asking about missing design principles

by means of an open question. The following three principles

were selected as the most important ones that were missing.

A. Dependency Inversion Principle (DIP)

13 answers referred to the DIP as one of the five SOLID
principles. Many opinions of the participants stress the power of
DIP in breaking cyclic dependencies and foster a loose coupling
of software modules. Consequently, it supports software
development in re-using software components and optimizing
modularity.

B. KISS (Keep It Simple & Stupid) Principle

In eight surveys the KISS principles was mentioned as
missing. KISS concentrates on reducing complexity and
building software that is as simple as possible, but still meets
the requirements of stakeholders. By reducing complex
constructs, it is possible to create a common code ownership
that supports the development of comprehensive solutions.

C. YAGNI (You Ain’t Gonna Need It) Principle

The third principle is YAGNI that is referenced in six
answers. YAGNI has a similar goal like KISS that focuses on
building solutions, which are not overloaded with unnecessary
functionality.

IV. CONCLUSION AND FUTURE WORK

This survey provides a good understanding of the relevance
of design principles in practice. Based on that result, we will
continue to focus on the most important design principles and
establish approaches to operationalize them. For validating
these approaches, qualitative and quantitative assessments will
be conducted on industrial projects.

