
Internet Security

44 COPublished by the ieee COmPuter and reliability sOCieties ■ 1540-7993/09/$26.00 © 2009 ieee ■ July/august 2009

M any Web applications, such as those for
e-commerce or collaboration, use out-
of-the-box Web content management
systems. WCMSs let users who don’t

have in-depth development knowledge easily build
a customized Web site with broad functionality. For
small- and medium-sized enterprises, open source
WCMSs offer an easy to use, low-cost alternative to
commercial software. However, these systems raise
significant security issues.

Security is critical to any Internet-connected in-
formation system; vulnerabilities can create serious
consequences for system users and operators, includ-
ing stolen credit-card data or customer information.
Because of their wide usage, open source WCMSs
are a desirable target for attackers. Once mali-
cious users discover a vulnerability in a particular
WCMS, they can carry out attacks on many—if not
all—of the applications built with it. Open source
WCMS developers are aware of this and have estab-
lished security teams, Internet forums, and security
tips for users. Still, the security of such systems re-
mains unclear. To shed light on it, we’ve selected
two popular open source WCMSs based on PHP:
Hypertext-Preprocessor (PHP) and analyzed them
for well-known vulnerabilities.

Web Content
Management Systems
Heidi Collins defines content management as main-
taining, organizing, and searching across information
sources, both structured (databases) and unstruc-
tured (documents, emails, video files, and so on).1

Among CMSs,
we distinguish
between those focused on the Web and the enter-
prise. Historically, the content management concept
originated from organizations’ efforts to manage
Web content.2 The enterprise content management
(ECM) concept reaches beyond Web content man-
agement, however, addressing management of “the
convergence of all front-end applications and devices
with back-end document/file management systems
and databases.”2 ECM involves not only technical
systems, but also “the strategies, tools, processes and
skills an organization needs to manage its informa-
tion assets over their lifecycle.”3

In contrast, according to current understanding,
a WCMS supports creating and publishing content
structured in Web formats, such as HTML, XHTML,
XML, and PDF. A WCMS also lets users review, ap-
prove, and archive content, and (sometimes) offers
version control.4 Using such functions, users can
implement an editorial process that comprises several
roles with varying privileges, including authors, re-
viewers, and consumers.

An organization might, for example, use a WCMS
to build corporate Web sites, online shops, or com-
munity portals. The major advantage of a WCMS is
that it lets site creators modify content without having
to edit code or possess other specialized knowledge.
Organizations typically store the content in databases
and publish, modify, and remove it using graphical
user interfaces.

A WCMS can be divided by front- and back-end
functionality. The front end presents available content

Users of Web content management systems (WCMSs) lack

expert knowledge of the technology itself, let alone its

security issues. Complicating this, WCMS vulnerabilities

are attractive targets for attackers, leaving the applications

and their nonexpert users open to exploitation.

Michael
Meike

Trusted Bytes

Johannes
saMetinger
and andreas
Wiesauer

Johannes
Kepler
University

security in Open source
Web Content management
systems

Internet Security

 www.computer.org/security 45

to consumers, who typically don’t have permission to
change or edit the content. However, front-end users
are sometimes granted special permissions, such as to
submit comments on articles.

Publishing and editing is done via the application’s
back end, which is the workplace for authors and re-
viewers. Authors typically enter their content using a
rich text editor, which creates HTML, XHTML, or
XML markup. They render this markup by applying
style sheets—such as CSS or XSL—which authors can
adapt to suit their design needs.

WCMS Security
In software systems, security vulnerabilities are de-
fects at either the design or implementation level.
Gary McGraw defines a bug as an implementation-
level software problem and a flaw as a problem that’s
“certainly instantiated in software code, but is also
present on the design level.”5 Examples of flaws in-
clude error-handling problems and broken or illogi-
cal access control. Bugs and flaws create risks, which
are the probability that a flaw or a bug will impact
the software’s purpose: risk = probability × impact.5

Software defects might exist for a long time before at-
tackers actually exploit them.

Networking applications—especially those ex-
posed to the Internet—are much more vulnerable to
threats than conventional stand-alone desktop applica-
tions as many more users can access them, and access
is much harder to control. Often, attacks over the In-
ternet are almost fully automated, and many tools let
people with even minor technical knowledge (known
as “script kiddies”) exploit vulnerabilities.

Key Vulnerabilities
As a Web application, a WCMS is an attractive target
for attackers and a major source of security vulner-
abilities.6 Threats affect one or more security aspects.
According to several experts,7,8 Web application
threats include

Data manipulation•	 . This type of attack violates data
integrity, and the resulting data loss or perversion
can have serious consequences. Common attack
techniques here include parameter manipulation
and SQL injection.
Accessing confidential data•	 . Here, attackers access off-
the-record data using techniques such as structured
Query Language (SQL) injection and cross-site
scripting (XSS).
Phishing•	 . This attack gathers confidential data—such
as bank account information, social security num-
bers, or passwords—by contacting users under false
pretences via email and luring them to Web sites
where they’re encouraged to enter personal data.
For example, attackers might use XSS to gather

user data by placing manipulated input forms on
pages managed by a WCMS. They can also exploit
WCMS vulnerabilities to lure users to replicated
Web sites that mimic an official site, such as a bank,
and gather data accordingly.
Code execution•	 . Attackers can exploit WCMS vul-
nerabilities to load files or programs containing de-
fective code onto a Web server. They can do this by
using even simple graphic files. The WCMS must
carefully verify inputs because such an attack can
harm not only the WCMS itself, but also other ap-
plications on the same server.
Spam•	 . Here, Web crawlers scan the Internet for valid
email addresses and send spam accordingly. Attack-
ers can also use an application vulnerability to send
spam through the application’s server, turning it into
a spam relay server.

As these examples show—and Michael Howard
and David LeBlanc note—Web applications in gen-
eral, and WCMSs in particular, operate in a hostile
environment.9

Attacks and Countermeasures
Attackers use various attack patterns, which are blue-
prints for creating a particular type of attack. Each
attack consists of several phases of discovery and ex-
ploitation; the pattern generalizes the steps so that
other malicious users can successfully attack the appli-
cation. Attack patterns can include many dimensions,
such as timing, resources required, and techniques.10

Because of a WCMS’s wide application area, the
possible harm due to attacks is manifold. If a WCMS
is used as an e-commerce site, attackers might obtain
confidential customer data, such as credit-card infor-
mation. If the site’s owner had failed to properly se-
cure the WCMS, an attack disclosure could lead to
claims for damages, as well as a general loss of cus-
tomer confidence.

In other cases, attackers might gather user informa-
tion, such as addresses and profiles, and sell the infor-
mation to the site’s competitors. A WCMS can also be
sabotaged and rendered inaccessible. This could, for
example, lead to a decline in sales.

On corporate WCMS Web sites, attackers might
utilize security leaks to upload malicious code and
harm a company’s IT infrastructure. Attackers might
also alter the company’s Web site content by, for ex-
ample, adding dubious and suspect content to tarnish
the company’s reputation.

To be considered secure, a Web application must
ensure

authentication, by verifying that entities or people •	
are who they pretend to be;
confidentiality, by hiding information from unau-•	

Internet Security

46 ieee seCurity & PriVaCy

thorized people;
integrity, by preventing unauthorized people from •	
modifying, withholding, and deleting information;
and
availability, by performing operations according to •	
their purpose over time.11

To achieve these goals, application developers
can use several mechanisms, including sophisticated
authentication, user access control, and mechanisms
that determine when to maintain data confidentiality,
such as when not to show credit-card numbers when
verifying a person’s financial state.

Security Analysis:
Open Source WCMS
As the sidebar, “Open vs. Closed Source Security”
notes, an open source system’s primary attractions
give rise to its vulnerabilities: its low cost and source
code availability make it readily accessible to attackers
seeking to locate and exploit application weaknesses.
Still, open source WCMSs are widely available and
widely used.

Figure 1 shows an overview of technologies and
corresponding WCMSs. Most systems are developed
in PHP, Java, Perl, or Python. As the ellipses indicate,
all systems—independent of their implementation—
use Web standards such as HTML, XML, and CSS
and relational databases such as MySQL.

It’s difficult to determine the exact number of sites
powered by a specific WCMS. Various sources try to
estimate such numbers using different metrics.12 For
our case study, we chose Joomla (www.joomla.org)
and Drupal (www.drupal.org)—two open source
systems that create complex Web content. These are
among the most widely used systems according to

such estimates. Additionally, UK Linux World named
Joomla the Best Linux/Open Source Project in 2006
(www.joomla.org/announcements/general-news/
2165-joomla-wins-again-at-uk-linuxworld.html).
That same year, Joomla also won Packt Publishing’s
Open Source CMS Award, and Drupal took second
place (see www.packtpub.com/article/open-source
-content-management-system-award-winner
-announced).

Joomla and Drupal have many similarities. They
both use LAMP—that is, Linux, Apache, MySQL,
and PHP. They both also use XML files to store con-
figuration parameters and CSS for design and layout,
and have similar functionality. Nonetheless, Joomla
and Drupal have key differences that make them in-
teresting from a security-comparison perspective, in-
cluding different architectures and implementations.

Joomla
Joomla is a derivative of Mambo, a popular PHP-
based WCMS, and has been used to build roughly 5
million Web sites worldwide. The system emphasizes
ease of use, so even nontechnical users can create, edit,
and maintain content. Joomla also offers many out-of-
the-box Web site components, including forums and
chat components, calendars, and blogging software.
Joomla is easily customized for special needs and is
in use on everything from private and small business
Web sites to corporate portals.

Joomla developers are organized in a core team that’s
responsible for overall project management, and sev-
eral working groups that handle particular issues, such
as development, documentation, or translation. Joomla
developers estimate that there are more than 140,000
active registered users on the Official Joomla commu-
nity forum (http://demo.joomla.org/1.5/more-about
-joomla/30-the-community/21-joomla-facts.html).

The Joomla forum comprises a security section in
which users discuss security issues and submit possible
vulnerabilities (http://forum.joomla.org/viewforum.
php?f=432). This section also contains guidelines, tu-
torials, and hints for increasing security and mitigat-
ing risks. Security issues are categorized according to
level (low, medium, or high) and are fixed in minor
releases or by patches.

Drupal
Dutch students developed Drupal in what was origi-
nally an effort to implement a collaboration platform.
Today, Drupal is used for numerous private and uni-
versity Web sites, as well as for collaboration portals
and e-commerce sites. DrupalSites.net, for example,
lists several thousand Web sites powered by Drupal
(www.drupalsites.net). Like Joomla, Drupal offers
many additional modules, including newsletters and
podcasting components.

Joomla

PHPNuke

Typo3
PHP

MMBase
Webman

OpenCMS

Java

MySQL

HTML

XML
CSS

Perl Mason

Metadot Portal-Server

Plone ZMS
Python

Mambo

Drupal WebGUI

Figure 1. Open source Web content management systems and related

technologies. All systems, regardless of implementation, use Web

standards, such as HTML and CSS, and relational databases.

Internet Security

 www.computer.org/security 47

Drupal developers have their own security team
(http://drupal.org/security-team) that’s responsible
for accepting and evaluating security-related warn-
ings, searching for vulnerabilities in the core applica-
tion, and supporting module developers in fulfilling
security requirements.13 In recognition of security’s
importance, the Drupal Web site has a dedicated sec-
tion to inform users about current vulnerabilities and
appropriate patches.

Analysis Overview
For our analysis, we used Drupal 5.2 and Joomla 1.0.13.
As of this writing, newer versions of both systems are
available. However, our goal hasn’t been to list a specif-
ic version’s vulnerabilities, but rather to give a sense of
the systems’ security status and whether users can trust
this security without further ado. Hopefully, both or-
ganizations will constantly release newer versions that
fix known security problems. Indeed, updates to both
applications fix some of the vulnerabilities we now de-
scribe, further confirming our analysis results. How-
ever, new versions can also introduce new problems,
and attackers might find additional security holes.

We carried out our security analysis in several steps.
First, we installed both systems and evaluated how
different configuration settings—such as deactivating
the PHP safe_mode setting—might influence secu-
rity issues. Second, we performed simple penetration
tests by sending various malicious input. We were aid-
ed here by several simple tools—including WebScarab
(www.owasp.org/index.php/OWASP_WebScarab
_Project) and TamperData (http://tamperdata.
mozdev.org)—that let us perform simple security tests
by manipulating parameters sent to Web servers, such
as modifying data in HTTP request headers. As we
describe later, we sent simple requests that could lead
to XSS or SQL injection.

In our third step, we inspected the source code
files of both Joomla and Drupal for additional prob-
lem areas. Both systems had almost 2,000 source files,
which we searched for security-related strings. For
example, $_SERVER indicates an access to the Web
server’s global variables, which might contain input
from the Web client. The variables might also include
hazardous input from malicious users. So, for our
analysis, we simply reviewed the code to see whether
the developers had taken appropriate measures before
they used the variables’ content. We also used the
source files to understand and evaluate the systems’
general security mechanisms, such as authentication
or user session management.

In step 4, we used the knowledge gained in step
3 to send additional and more focused malicious re-
quests. Finally, we evaluated community support for
security issues by simply browsing the Joomla and
Drupal Web sites and by checking for specific com-

munity activities, including security forums, FAQs,
and checklists.

Finally, although it’s possible to assess WCMS se-
curity using special penetration testing tools, we re-
frained from using commercial tools. However, we
might consider using license-free tools—such as those
for source code analysis—in future evaluations.

Analysis Results
We evaluated the two systems according to specific
security categories and criteria. Table 1 offers a sum-
mary of the results.

Community
On the Internet, change happens quickly; knowledge
about vulnerabilities also spreads quickly. It’s thus
necessary to rapidly respond to vulnerabilities and
provide patches to prohibit their exploitation once
they’re publicly known. Development communities
must be dedicated to providing both a secure system
and information for their users on how to further en-
sure system security. Communities should also define
processes for reporting vulnerabilities and tracking
their status.

Both the Joomla and Drupal communities are

O pen source software’s main advantage is its low cost—it’s freely

available and requires no licensing fees. In addition, because of the

source code availability, users can tailor open source software to their

specific needs. However, potential attackers can also use the source code

to identify vulnerabilities.

Experts have differing opinions as to whether open source applications

are more prone to security failures than commercial products; they also

disagree on the overall quality of open source versus commercially devel-

oped applications.1 Some experts argue that open source developers are

less trained and therefore produce more failures and weaker designs than

their commercial counterparts. Others assert that open source’s “many

eyeballs phenomenon”2—that is, that a whole community is involved

in programming, testing, using, and offering feedback on open source

applications—leads to quicker discovery and repair of failures.

Obviously, closed source software also suffers from security vulner-

abilities. As John Viega and Gary McGraw noted, it’s “a false belief that

code compiled into binaries remains secret just because the source is not

published.” That is, when code is running, hackers have various methods

for examining it—“security by obscurity” isn’t as effective as many

people think.2

References

G. Lawton, “Open Source Security: Opportunity or Oxymoron?” 1. Computer, vol.

35, no. 3, 2002, pp. 18–21.

J. Viega and G. McGraw, 2. Building Secure Software: How to Avoid Security Problems

the Right Way, Addison-Wesley, 2002.

Open vs. Closed Source Security

Internet Security

48 ieee seCurity & PriVaCy

dedicated to fulfilling these security requirements
as follows:

Security patches•	 . Joomla provides specific security
Web pages and newsgroups. Development team
members occasionally reorganize the Joomla struc-
ture and engage new teams to improve system

quality. Drupal has a separate security team. Both
systems provide new versions periodically and urge
their users to update to the current version. This is
important as attackers can use a system’s version his-
tory to find information about eliminated vulner-
abilities and then search the Web for older versions
to exploit.
Vulnerability reporting•	 . Users can report vulnerabilities
on both systems’ Web sites. Joomla security issues are
discussed at the official forum, whereas Drupal pro-
vides a section with detailed security announcements
and information on how to fix issues quickly.
Tips on countermeasures•	 . Joomla users discuss counter-
measures at their forum, whereas Drupal team mem-
bers publish information in the site’s security section.

Both systems’ communities pay adequate attention to
security aspects, systematically tracking vulnerabili-
ties and providing patches with security fixes.

Installation
Because many WCMS users are nonexperts, it’s im-
portant that the installation process be as automated
as possible. WCMSs have many configuration settings
that might open or close specific vulnerabilities; if us-
ers choose the default settings, the system should be
secure:

Security hints•	 . Joomla provides a pre-installation
check and warns users of suboptimal security set-
tings. Drupal has a simpler installation process that
doesn’t provide security issue hints.
Security settings•	 . Once installation is complete, nei-
ther system offers sufficient support for modifying
the security settings. However, the settings’ prima-
ry focus is to guarantee a trouble-free collaboration
with third-party modules.

It’s important that users are alerted to security issues
during installation and that they can easily modify
security settings thereafter. Here, both systems have
ample space for improvements.

Parameter Manipulation
Parameter manipulation includes the ability to alter
super global variables, cookie poisoning, remote com-
mand execution, and Web form data manipulation as
follows:

HTTP header data•	 . If an Internet application doesn’t
check for valid HTTP header data, manipulated
data can result in multiple answers to a single re-
quest. Thus, a proxy or cache server might send ma-
nipulated answers to clients.
Super global variables•	 . In PHP applications, super
global variables contain information set by the Web

Table 1. Security analysis results.

Joomla DRupal
CommuniTy
Security patches ● ●

Vulnerability reporting ● ●

Hints on countermeasures ● ●

inSTallaTion
Security hints ● ❍

Security settings ❍ ❍

paRameTeR manipulaTion
HTTP header data ❍ ❍

Super global arrays ● ●

Cookies ● ●

Remote Command Execution ● ●

Forms ◗ ❍

CRoSS-SiTe SCRipTing (XSS)
APIs against XSS ● ●

XSS via URL parameter ● ●

XSS via search fields ● ●

XSS in other forms ● ●

XSS in back end ● ●

SQl inJeCTion
Any countermeasures ● ●

uSeR aDminiSTRaTion
Login: XSS or SQL injection ● ●

Secure passwords ❍ ◗

Sessions at the server ❍ ◗

Sessions at the client ● ●

Session hijacking ◗ ❍

Access to functions ◗ ●

Spam
Contact forms ● ◗

Spam relays ● ●

Email addresses ● ❍

maliCiouS file uploaD
Checking file endings ● ●

Checking file contents ❍ ❍

elevaTion of pRivilege
Privileged users ❍ ◗

Administrators ❍ ❍

opTional moDuleS
Warnings ● ●

Security measures in core ❍ ❍

●: Security requirement fulfilled

◗: Security requirement partially fulfilled; potential security risk

❍: Security requirement isn’t fulfilled; definite security risk

Internet Security

 www.computer.org/security 49

server or otherwise directly related to the execu-
tion environment. Attackers can manipulate these
variables to carry out SQL injection or XSS. There-
fore, the system must check these variables before
processing them.
Cookie poisoning•	 . Cookies typically store user-related
data—such as shopping cart items—on a user’s local
computer. However, attackers can poison cookies
by altering their contents during transmission to the
server. Therefore, a WCMS must not blindly trust
cookie data.
Remote command execution•	 . Attackers can execute re-
mote commands on the WCMS by including mali-
cious PHP scripts stored on the computers they’re
operating. To achieve this, attackers must manipulate
parameters such that the PHP operations are called
with the malicious script’s URL. Thus, the system
must check parameters if their content can lead to
the execution of operations such as include() or
require().
Web form data•	 . Web forms contain various ways of
transferring data from the user to a server. It’s rather
easy to manipulate this data and send dangerous
contents to a server.

Although Joomla and Drupal are quite prepared for
parameter manipulation, they’re not without deficien-
cies: neither system sufficiently filters HTTP headers
and Web form data. Drupal, for example, stores all
transmitted data unfiltered in an underlying database
table. Consequently, the security system checks only
the database query results.

Cross-Site Scripting
Attackers can manipulate Web servers’ input data to
contain script code, such as JavaScript. If the server
sends this input to other clients without appropriate
checks, the client side executes the script code. Thus,
XSS isn’t dangerous to the server itself, but to its cli-
ents. Take, for example, the input <script>java
script:alert(“hacker alert”);</script>.
If attackers input this text with HTML escape codes or
encode it in hexadecimal numbers, servers would find
it much more difficult to recognize. Both Joomla and
Drupal seem adequately prepared to prevent XSS.

SQL Injection
SQL injection reads or alters database contents through
user input, which must be checked for SQL commands
to avoid danger. Typically, attackers use Web form in-
put to create database queries in SQL. Malicious us-
ers might input parts of SQL commands and thus alter
the meaning of the WCMS’s SQL commands. For
example, a malicious user might append OR ‘1’=‘1’
in a Web form field. If the WCMS uses this input to
create a SELECT or DELETE statement, it could lead

to unwanted data disclosure and manipulation. The
Boolean expression OR ‘1’=‘1’ always yields true and
will therefore successfully execute the SQL statement
independent of the other parameters. As an example, if
a user enters John Doe as his name, the following SQL
statement will deliver information about him:

SELECT * FROM users WHERE name
 = ‘John Doe’;

If a malicious user alters the name and enters John
Doe’ OR ‘1’=’1 instead, the following SQL query
will be used:

SELECT * FROM users WHERE name
 = ‘John Doe’ OR ‘1’=‘1’;

This statement will provide information about all users.
Both Joomla and Drupal perform checks to prevent

SQL injection. Drupal offers a function db_query()
that can and should be called before sending SQL que-
ries. Joomla uses PHP’s mysql_escape_string()
function, which masks all kinds of special characters.

Authentication
When using a secure system, users first encounter the
login mechanism, which is sometimes vulnerable to
XSS or SQL injection. Insecure passwords can also
grant access to unauthorized users. Also, session hi-
jacking can occur if the system uses insecure connec-
tions to transfer authorization data. Last but not least,
systems must make authorization checks not only
during login but also when users access specific func-
tions; a regular user, for example, shouldn’t be allowed
to call administration functions.

On the client side, both Joomla and Drupal proper-
ly secure the login mechanism and session data. How-
ever, both also contain weaknesses related to password
security and unauthorized access to functions.

Spam
Some attackers employ tools that use email forms to
send messages to third parties, with the server acting
as a spam relay. One way to reduce spam is to use a
CAPTCHA, an acronym for a completely automat-
ed public Turing test to tell computers and humans
apart. Also, systems shouldn’t present email addresses
in a form readable by automated tools—such as spam-
bots—which can use them as spam targets.

Joomla addresses all aspects of spam; Drupal has
yet to make a full effort and publishes email ad-
dresses plainly.

Malicious File Upload
Copying files to a Web server is inherently dangerous
because attackers can camouflage file contents; a file

Internet Security

50 ieee seCurity & PriVaCy

name ending with “.jpg” doesn’t necessarily contain
an image. Systems must check any contents trans-
ferred to a server.

Both Joomla and Drupal lack sufficient mecha-
nisms to prevent malicious content upload. For ex-
ample, in both systems, attackers can upload malicious
data hidden as a file because both systems validate file
type, but not content, and would thus simply treat a
“.jpg” file as an image.

Privilege Elevation
The more privileged a user, the more severe the attack
he or she can perform. This is because highly privi-
leged users can access system parts that let them trans-
fer various content types—such as text strings—that
can hide malicious code. They can use HTML code,
such as a simple image tag, to transmit JavaScript.
Thus, if someone fraudulently obtains access to a less
privileged user account, it can be a first step toward
intruding to a more highly privileged account.

Joomla provides a TinyMCE editor that validates
user input on the client computer. It’s therefore easy
for attackers to bypass the check and transmit any kind
of script code to the server to launch attacks such as
XSS. Because Drupal filters all textual contents before
they’re sent to the client, it makes it more difficult for
attackers to violate data integrity. However, Drupal
lets attackers upload PHP code that’s interpreted on
the server without further checks in case an adminis-
trator carelessly changes some configuration settings.

Optional Modules
Although they increase functionality, optional mod-
ules can also compromise the entire system’s security.
It’s therefore important both to warn users about po-
tentially insecure modules and to provide core system
mechanisms that prevent additional modules from
compromising security.

Both Joomla and Drupal offer warnings that should
keep users from adding questionable modules.

Results Summary
Figure 2 summarizes possible WCMS attacks, which
might be directed at a target object, such as third-party
users in a spam attack, or at the database, where SQL
injection might lead to confidential data disclosure.

Table 1 summarizes our security analysis results.
Although Joomla and Drupal provide extensive secu-
rity mechanisms, there’s ample opportunity for inex-
perienced and experienced users to open the doors for
malicious code. Both systems are supported by secu-
rity-aware communities, and we expect their security
levels to increase in the future. Still, we can’t recom-
mend unwary use of these systems.

A lthough eliminating the vulnerabilities in Joomla
and Drupal isn’t difficult given some expert

knowledge, the systems are targeted to a nonexpert
audience. Consequently, many systems out there have
vulnerabilities that attackers can easily exploit. Such
systems might not (yet) be attractive enough to actu-
ally attract attacks. However, it’s our task to both be
ahead of attackers in securing high-risk applications
and also to provide basic security for small- and medi-
um-sized companies. Given this, can we recommend
using WCMSs like Joomla or Drupal? And what can
nontechnical users do to minimize threats if they do?

Using these systems is a viable option, but users
must take precautions. Above all, nontechnical users
should always use the latest available version. Techni-
cally skilled users can stick to older versions, but they
must be familiar with their version’s security status and
regularly visit the WCMS’s Web site for vulnerability
and countermeasure updates. Also, when installing a
WCMS, users should carefully set configuration set-
tings with security in mind, and nontechnical users
should follow the community’s recommendations.
The same precautions hold when installing optional
modules, which might themselves contain vulner-
abilities. Finally, when deciding on which WCMS to
use, we recommend that each community’s security
efforts be a key criterion.

References
H. Collins, 1. Enterprise Knowledge Portals: Next Generation
Portal Solutions for Dynamic Information Access, Better Deci-

Malicious user

Database

Web server
(WCMS)

Internet User

SQL injection

Cross-site
scripting

Elevation of privilege

Spam relay

Spam

Parameter manipulation

Session hijacking

Malicious �le upload

Authentication bypass

Figure 2. Potential Web content management systems attacks. Attacks

might be aimed at a target object, such as a third-party user, or at the

database, as in the case of SQL injection.

Internet Security

 www.computer.org/security 51

sion Making, and Maximum Results,” Am. Management
Assoc., 2003.
T. Päivärinta and B.E. Munkvold, “Enterprise Content 2.
Management: An Integrated Perspective on Informa-
tion Management,” Proc. 38th Hawaii Int’l Conf. on Sys-
tem Sciences, IEEE CS Press, 2005, p. 96.
H.A. Smith and J.D. McKeen, “Developments in Prac-3.
tice VIII: Enterprise Content Management,” Comm.
Assoc. of Information Systems, vol. 11, no. 33, 2003, pp.
647–659.
P. Hallikainen, H. Kivijärvi, and K. Nurmimäki, 4.
“Evaluating Strategic IT Investments: An Assessment
of Investment Alternatives for a Web Content Manage-
ment System,” Proc. 35th Hawaii Int’l Conf. on System
Sciences, IEEE CS Press, 2002, pp. 238–248.
G. McGraw, 5. Software Security: Building Security In,
Addison- Wesley, 2006.
Symantec Internet Security Threat Report, Trends for 6.
July-December 07, Volume XIII, Apr. 2008, http://eval.
symantec.com/mktginfo/enterprise/white_papers/
b-whitepaper_internet_security_threat_report_xiii
_04-2008.en-us.pdf.
R. Newman, “Cybercrime, Identify Theft, and Fraud: 7.
Practicing Safe Internet—Network Security Threats
and Vulnerabilities,” Proc. 3rd Conf. on Information Security
Curriculum Development, ACM Press, 2006, pp. 68–77.
A. Tanenbaum and M. van Steen, 8. Distributed Systems—
Principles and Paradigms, Prentice Hall, 2002.
M. Howard and D. LeBlanc, 9. Writing Secure Code, Mi-
crosoft Press, 2001.
G. Hoglund and G. McGraw, 10. Exploiting Software: How
to Break Code, Addison-Wesley, 2004.

E. Jonsson, “Towards an Integrated Conceptual Model 11.
of Security and Dependability,” Proc. 1st Int’l Conf. on
Availability, Reliability and Security (ARES 06), IEEE CS
Press, 2006, pp. 646–653.
Compass Design, 12. How Many Websites Use Joomla: 30
million? www.compassdesigns.net/joomla-blog/How
-Many-Websites-Use-Joomla-30-million-.html.
Drupal Assoc., 13. Writing Secure Code, 2006; http://drupal.
org/writing-secure-code.

Michael Meike is founder and CEO of Trusted Bytes, a Web

programming services company. He also developed Micro-

Balance, a successful private and freely available cash-basis

accounting software. Meike has a master’s degree in business-

oriented computer science from Johannes Kepler University,

Lintz, Austria. Contact him at meikemichael@gmx.de.

Johannes Sametinger is a professor in the department of

business informatics at Johannes Kepler University, Lintz, Aus-

tria, where his research interests include software engineering,

with an emphasis on software security. Sametinger has a Dr.

techn. in computer science from Johannes Kepler University.

He is a longtime member of the IEEE and the ACM. Contact

him at johannes.sametinger@jku.at.

Andreas Wiesauer has a teaching and research position in the

department of business informatics at Johannes Kepler Univer-

sity, Lintz, Austria, where he is working on his doctoral degree in

software security. His other research interests include software

architecture and software design. Wiesauer has a master’s de-

gree in business-oriented computer science from Johannes Ke-

pler University. Contact him at andreas.wiesauer@jku.at.

EnginEEring
and applying
thE intErnEt

IEEE Internet Computing magazine reports on emerging
tools, technologies, and applications implemented
through the Internet to support a worldwide
computing environment.

Upcoming issUEs:

Cloud Computing

Unwanted Traffic

Social Computing in the Blogosphere

Rich Internet Applications

www.computer.org/internet/

