03.12.00 15:14 1 Wei Sam_ComponentModel FINAL.doc

Component Models and Component Services:

Concepts and Principles
Rainer Weinreich

Johannes Sametinger

Section I Authors Raner Wenreich, Johannes Sametinger
Chapter 6 E-mal wanrech@swveun -linz.ac.at,

Addresses sametinger@acm.org
Pages Phone +4370 2468 - 9434,

Number +4370 2468 - 9435
Date 12/03/00 Dates GH (3/21/00 8:51 PM) GH(4/2/00 10:39
Complete 3:00 PM Reviewed AM); BC (4/4/00 10:02 PM); BC (4/5/00

RW 12:05 PM) BC (4/6/00 4:11 PM), GH

(8/16/00 2:13 PM) BC (17Aug2000@4:08
CDT PM), BC (200ct2000 5:50 PM), GH
(10/23/00 10:38 PM), GH (10/25/00 9:34
PM), BC (24Nov2000 6:05 PM), BC
(25Nov2000

12:05 PM), GH (11/26/00 7:46 PM) BC
(28Nov2000 12:58 PM)

Introduction

In this chapter, we describe, comment, and moativate discussons upon basic concepts and
principles of component models and component services. We argue that component
systems have been used at a coarse-grained leve for decades. Discussons and
disagreements concerning the term component have appeared because industry and
academia have tried to develop technologies for smdller, fine-grained components.

Early component systems

Operding systems are among the first successful component systems (Szyperski 1997).
We expect readers to be familiar with a least one operating system; and, thus, we will
use operating systemsto illudrate the basi ¢ ideas behind component models and
component modd implementations. Operaing sysems provide an execution environment
for software gpplications. In particular, operating systems present an abgraction of the
underlying hardware to gpplications and regulate their shared access to various resources.
They d 0 provide basic services, such as memory management, file management, inter-
pprocess communication, process synchronization, and security. Without operating
systems, each individud gpplication would have to implement such generd functiondlity.
The avallability of awide range of services smplifies goplication development.

Naturdly, interfaces have to be defined to |et gpplications use these sarvices These
interfaces are cdled gpplication programming interfaces (AP19).

To make an andogy, operating systems are component mode implementations (see
Chapter 4) for gpplications, which may be viewed as coarse-grained components. Once a




03.12.00 15:14 2 Wei Sam_ComponentModel FINAL.doc

component modd implementation is developed and documented, multiple vendors can
develop applications that use the low-level services provided by the component moded
implementation. At the granularity of an gpplication, there is a functioning component
market. Y ou can buy applications from different vendors and use them together on a
sngle computer; the gpplications dl adhere to the “ andard” defined by an operating
system. Often these dandards are part of a particular operating system implementation;
sometimes they are specified more explicitly and made avallable to the public, such as

the UNIX 98 standard promoted by the Open Group (Www.opengroup.org) and the Linux
Standard Base (www.linuxbase.org).

Deficiencies of early component systems

Continuing our andogy, we see severd shortcomings. Components at the application
level can be used, but they do not sufficiently enable widespread software reuse. The lack
of reuse results because applications are too coarse-grained, because applicationslack
compogition support, and because operating systems lack domain-specific Sandards

1. Lack of granularity. Applications are too coarse-grained to improve software
reuse. Application developers are often required to design and fully implement
common functiondity that any application would have. Component- based
software engineering (CBSE) seeks to factor out these commondtiesinto either
sarvices provided by the component modd implementation or components that
could be purchased and integrated into a component infrastructure. A centrdl
concept of CBSE isto develop technologies for srdler, fine-grained components
and enable asmilar degree of reuse on the leve of gpplication parts as had been
possible at the gpplication leve.

2. Lack of composition support. While gpplications have long been units of
independent deployment, there hastypicaly been no support for composition,
induding third- party composition (recal the definition of the term, software
component, in Chapter 4). In fact, operating systems ensure that gpplications
execute in complete isolation from each other. Mechanisms such asinter-process
communication have been introduced to enable data exchange among
aoplications, but application interfaces are often poorly specified and compostion
gandards are missing. While gpplications are deployed in the operating system
and use its sarvices, they are rardy units of compogtion.

3. Lack of domain-specific standards. The services provided by an operating system
are too generd to support specific application domains. For example, asmulation
system needs other services and APl sthan a process control syssemor a
telecommunication gpplication.

The god of CBSE isto develop software sysems by composing reusable components at
afiner levd of granularity then gpplications. Naurdly, these fine-grained components
need standards for interaction and compostion, aswell as sandardized infrastructures
and sarvices. The chdlenge of CBSE isto define component modes with such sandards



03.12.00 15:14 3 Wei Sam_ComponentModel FINAL.doc

and to provide associated component mode implementations to enable components and
component infrastructures to be designed, implemented and deployed.

Components and objects

CBSE iscommonly consdered the next step after object-oriented programming. Thus it
isnot surprisng that components are often reaed to objects and sometimes the term
component is smply used as a synonym for object. However, the concepts of
components and objects are independent athough most component modes are based on
obj ect-oriented concepts. To avoid further confuson we briefly characterize objects and
components and outline their differences.

Objects are entities that encapsulate sate and behavior and have a unique identity. The
behavior and structure of objectsis defined by casses. A dass serves multiple purposes.
Frg, it implements the concept of an abdract datatype (ADT) and provides an abstract
description of the behavior of its objects. Class names are often usad as type namesin
strongly typed systems. Second, a dlass provides the implementation of object behavior.
Third, aclassisused for credting objects, that is, ingtances of the class.

Nearly dl modern component models are based on the object-oriented programming
paradigm. The basic premise of object- orientation isto condruct programs from sets of
interacting and collaborating objects; this does not change with component-based
gpproaches. Components are Smilar to classes. Like classes, components define object
behavior and are used for creeting objects. Objects crested by means of components are
cdled component instances. Both components and classes make their implemented
functiondity available through abstract behavior descriptions, cdled interfaces.

Unlike dasses, the implementation of acomponent generdly is completely hidden and
sometimes only avallable in binary form. Interndly, acomponent may be implemented
by asngle dass, by multiple dasses, or even by traditiond procedures in a non-object-
oriented programming language. Unlike dasses, component names may not be used as
type names. Indeed, the concept of type (interface) and the concept of implementation
are completdly separated. Findly, the most important didtinction is thet software
components conform to the standards defined by a component modd.

Component models

A component modd defines a set of sandards for component implementation, naming,
interoperability, cusomization, compostion, evolution, and deployment. A component
mode dso defines sandards for an associated component modd implementation, the
dedicated set of executable software entities required to support the execution of
components that conform to the mode.

There are numerous component models currently available. The main competing
component models today are OMG's CORBA Component Modd (CCM), Microsoft's
(D)COM/COM+ family, and SUN Microsystems JavaBeans and Enterprise JavaBeans.
We need generdly accepted component models to create agloba component
marketplace. It is not necessary to agree on one Sandard; a the same time, there should



03.12.00 15:14 4 Wei Sam_ComponentModel FINAL.doc

not be too many sandards ather. The market share of a particular gandard hasto be
large enough to make the devel opment of complying components worthwhile (Szyperski,
1997). In this chapter, we comment on important eements congtituting a component
modd.

Elements of a component model
Inaglobd software component marketplace, components are independently deployed
and subject to third-party composition. Such a marketplace requires sandards. Standards
for communication and data exchange among components from different vendors are
rather obvious. Such an interoperability standard (1 sometimes called wiring or
connection standard [J isacentrd dement of acomponent modd. Other basic dements
of acomponent modd are gandards for interfaces, naming, evolution, packaging,
customization, and compogtion (see Table 1).

Teble 1: Basc dements of acomponent model
Standards for | Description

Interfaces Specification of component behavior
and properties; definition of Interface
Description Languages (IDL).

Naming Global unique names for interfaces and
components.
Metadata Information about components,

interfaces, and their relationships; APIs
to services providing such information.

Interoperability | Communication and data exchange
between components from different
vendors, implemented in different
languages.

Customization | Interfaces for customizing components,
needed by customization tools.

Composition Interfaces and rules for combining
components to create larger structures

and for substituting and adding
components to existing structures.

Evolution Rules and services for replacing

Support components or interfaces by newer
versions.

Packaging and | Packaging implementation and

Deployment resources needed for installing and

configuring a component.

A component moded can aso have specidized sandards for describing domain-specific
features required for certain gpplications. For example, the composition of componentsin



03.12.00 15:14 5 Wei Sam_ComponentModel FINAL.doc

domains with concurrent activities requires gppropriate Sandardized threading models
and synchronization mechanisms. An open digtributed processing system requires
gtandards for remote method invocation and security. Three-tiered business gpplications
needs sandardized transaction services and database APIs. Findly, a component model
for compound documents (like OLE) needs to specify part and container relaionships
and interfaces. Domain-gpecific component modes offer such spedid functiondity inthe
component modd implementation.

Interfaces, Contracts, and Interface Definition Languages

The main purpose of software componentsis software reuse. The two main types of
software reuse are white- box reuse and black-box reuse. White-box reuse means that the
source of a software component is fully available and can be studied, reused, adapted, or
even modified. White-box reuse plays amgor role in some olject -oriented frameworks,
which rely heavily on inheritance for reusng software implementations (See Gamma et

d., 1995). The problem with white-box reuseis that component consumers might depend
on theinternds of a component and thus be affected adversdy if the internds change.

Black-box reuse is basad on the principle of information hiding (Parnas, 1972), which
Sates that a component should reved aslittle about itsinner workings as possble. Users
of acomponent may only rey on interfaces, which are descriptions or pecifications of
component behavior. By usng interfaces, components may be changed interndly so long
asthey continue to satisfy the respongihilities defined by their interfaces. Changesto
interfaces are made explicit and tools, such as compilers, can Saicaly verify
compatibility with dient components.

An interface is not a condituent part of a component, but rather serves as a contract
between a component and its dients. An interface specifies the services aclient may
request from a component and which services a component hasto provide. Additiondly,
an interface may include congraints on the usage of these services that haveto be
conddered by both the component and its clients.

Interface specifications are a centrd eement of acomponent moded. A component modd
defines how a component's behavior is described by means of interfaces, other (non
functiond) gpecifications, and gppropriate documentation. A component modd defines
the dements that may condtitute an interface aswell as the semantic meaning of these
dements Wdl-known dements of an interface are:

Names of semanticaly related operations

Ther parameters

Vdid parameter types

Interfaces may dso include exceptions that may be raised, preconditions and
postconditions that have to be met when using individud operations, and even partid
specifications of the expected behavior of a component implementing the interface
(Biichi and Weck, 1999). Many component models have an interface definition language
(IDL) for describing interfaces and their d ements using an implementation-independent
notation.



03.12.00 15:14 6 Wei Sam_ComponentModel FINAL.doc

The component modd may define a st of spedific interfaces that need to be implemented
by components that conform to that modd. In generd, these interfaces will be used by
the component model implementation to provide dedicated services expected by the
components, such as transactions or security.

Naming

A globd marketplace requires uniqudly identifiable components and interfaces. Name
clashes (when two different components are mistakenly assgned the same name) have to
be avoided or a least should be highly unlikely. Thus, a sandardized naming schemaisa
necessary part of acomponent modd. The two main gpproaches to such anaming
schemaare uniqueidentifiers and hierarchica namespaces.

UniqueIDs. Unique identifiers are generated by dedicated tools (e.g., compilers),
which use a combination of specific data to guarantee the uniqueness of eech
generated identifier. An example of unique IDs are Globd Unique IDs (GUIDs),
which are used by Microsoft' s COM/DCOM/COM+ family. A GUID isa 128-hit
number that combines alocation identifier (e.g., the address of an Ethernet card), the
time of creation, and arandomly generated number. GUIDs were introduced by
OSH/DCE, where they were cdled Universally Unique IDs (UUIDs).

Hierarchical name spaces. Hierarchica namespaces are guaranteed to be unique if
the top-level names are uniqudly registered with agloba naming authority. Most
Java- based component modds use hierarchica namespaces (dthough thereisno
globd naming authority). SUN Microsystems advises manufacturersto adhereto a
registered Internet domain name as the root name for their components (Goding et.
a., 1996, p.125f).

Metadata

Metadata isinformation about interfaces, components, and their relationships. Such
information provides the basis for scripting and remote method invocation and can be
used by composition tools and reflective programs (see Maes[1987] and Kiczales[1991]
for agood treatment of reflection). A component modd must specify how metedatais
described and how it can be obtained. Component modd implementations must provide
dedicated services dlowing the metadata to be retrieved. There are many waysin which
metadata can be provided, such asinterface and implementation repositories of CORBA -
based systems, type libraries in COM -based systems, and introspection in Javar based
sysems.

Interoperability

Software component compogtion is possble only if components from different vendors
can be connected and are able to exchange data and share control through well-defined
communication channels. Component interoperability or wiring Sandards arethus a
centrd dement of any component modd.



03.12.00 15:14 7 Wei Sam_ComponentModel FINAL.doc

An operating system executes gpplications in separate and isolated process address
Spaces, but communicating components may reside in the same process address space. If
the component modd dlows the implementation of componentsin different

programming languages, caling conventions must be gardardized at the binary leve to
ensure interoperability of these components. Even if component implementations share
the same language, the binary layout of interfaces and parameter types may dill be
different. Interoperability of components within a process address space is possibleif the
component mode defines the binary interface sructure and caling conventions.

A component modd may aso support communication of components across Processes on
the same computer or over the network. Remote interoperaility is based on remote
method cals (RMCs), an extension of the concept of remote procedure calls (RPCs)
introduced by Birdl and Nelson (1984). An RMC consgs of adlient invoking amethod
of aremote server. To the dient, an RMC gppears Smilar to aloca method invocation
because the dient actudly invokes amethod of aloca proxy object thet offers the same
interface as the remaote component. The proxy transforms the method invocation
(induding parameters) into alinearized network formet (a process called marshaling) and
sends the data to a corresponding stub object on the remote machine. The sub receives
the data, recongructs the invocation (un-marshaing) and forwards the invocation request
localy to the component ingtance for which it was intended. Proxy and stub are called
sub/skeleton in CORBA-based systems.

A component mode supports distributed components by defining common data
representations and invocation semantics. Often component modds aso sandardize the
network protocols used for communicating among different components based on the
same component modd. Examples for remote method specifications are the Smple
Object Access Protocol (SOAP) for Windows .NET platforms
(msdn.microsoft.com/soap), Remote Method Invocation (RMI) for Java:based platforms
(javasun.com/products/jdk/rmi ), and Internet Inter-Orb Protocol (110P) for CORBA-
based systems (www.omg.org). SOAP, for example, uses the eXtensible Markup
Language (XML) for data encoding and the HyperText Transfer Protocol (HTTP) as
standard transport protocol .

Interactive development environments (IDES) supporting a particular component mode
usally provide dedicated tools for automeaticaly generating proxies and subs for remote
communication. Some component mode implementations support on-the-fly proxy and
stub generation (or generic proxies) based on metadata from component interfaces,

Different component modes may support incompatible remote method specifications. A
component modd should explicitly define how to “bridge’” communication among
implementations of different component modes. For example, the CORBA Specification
(OMG, 1999) defines how to access Microsoft COM objects from CORBA environments
and viceversa



03.12.00 15:14 8 Wei Sam_ComponentModel FINAL.doc

Customization

Interoperability standards and metadata about components and interfaces provide the
basis for component customization and compaosition. We define component
customization asthe ability for a consumer to adapt a component prior to itsinstallation
or use. Since components are treated in black-box fashion, reveding aslittle as possble
of their implementation, components can only be cusomized usng dearly defined
customization interfaces. A customization interface enables customization and
deployment tools to modify smple properties, or even complex behavior by providing
ingtances of other components as parameters to customization functions. Customization
tools may learn about the customization interfaces of components usng metadata
services,

Composition

Component composition or assenbly isthe combination of two or more software
components yielding a new component behavior. A component compostion standard
supportsthe creation of alarger Sructure by connecting components and the insertion or
subdtitution of components within an existing structure (see Chapter 4). Such an exiding
dructure is a component infrastructure, sometimes called component framework.

Thetwo badc types of component interactions are dient/server and publighvsubscribe.
Components may act as dients, requesting informeation from, or method invocations of,
other components. A component may register itsdf with another component or a
dedicated service and recaive natifications of interesting events. The component model
must define how to design interfaces to support such compostion. Metadata about
imported and exported interfaces of acomponent is required for composition tools and

langueges.

Various gpproaches to component compaosition at different levels of abdraction have
been identified (Weinreich, 1997). Components may be connected using all- purpose
programming languages, stripting or glue languages, visud programming or compasition
tools, or component infrastructures. Glue languages, such as VisudBadic, JavaScript and
TCL, support component compodtion a a higher leve of aodtraction than dl-purpose
programming languages, such as C++ and Java. Compostion through visud
programming further raisesthe leve of abdiraction, but there are drawbacks of visua
gpproaches, such asthe lack of dengty and structure of graphical representations and the
needed extra effort for graphic editing and layout operations (Petre, 1995).

The disadvantage of compaosition languages and tools is thet the glue code hasto be
written or grgphically spedified from inception. Maximum reuse is achieved with
component infragtructures designed for a gpecific domain, where the interaction among
component indances is dreedy predefined. Composition with a component infrastructure
isamatter of ingarting and subdtituting components conforming to the interaction
sandards defined by the component framework. Interaction standards specify which
interfaces participating components have to implement dong with rules governing
component interaction.



03.12.00 15:14 9 Wei Sam_ComponentModel FINAL.doc

Component infrasiructures or frameworks enable not only the reuse of individua
components but also of an entire design. For example, Weinreich (1997) describesa
trader-based component infrastructure for graphic editors, Szyperski and Pfister (1999)
describe a component infragtructure that supports compound documents, Praehofer et d.
(1999) describe a component infrastructure, based on JavaBeans, for smulation sysems.
Only awel-desgned component infrastructure engbles the effective and efficient
assembly of components.

Evolution Support

Component-basad systems require support for system evolution. Components acting asa
server for other components might have to be replaced by newer versons providing new
or improved functiondity. A new verson may not only have adifferent implementation

but may aso provide modified or new interfaces. Exiging dients of such components
idedlly should not be affected or should be affected aslittle as possible. In addition, old
versons and new versons of acomponent might have to co-exist in the same system.
Rules and standards for component evolution and versoning are thus an important part of
acomponent modd.

Packaging and Deployment

Widdy accepted component modd standards, as wdl as high- bandwidth Internet
connections, will change the deployment of what is now caled shrink -wrapped software.
It will become superfluous to bundle big software sysems and its documentation to sdl
off-the-shef. In addition to well-defined component modd implementations, only small
components will be needed to congtruct gpplications. Fast Internet connections will alow
component consumers to conveniently download packaged components with
documentation to develop comprehengve software systems.

A component model must describe how components are packaged so they can be
independently deployed. A component is deployed, that is, inddled and configured, in a
component infrastructure. Thus, the conponent must be packaged with anything thet the
component producer expects will not exist in the component infrastructure. Thismay
include the program code, configuration data, other components, and additiona
resources. A deployment description provides information about the contents of a
package (or of anumber of rdated packages) and other information that is necessary for
the deployment process. This description is andyzed by the target component
infrastructure and used for ingaling and configuring acomponent properly.

The deployment standard specifies sructure and semantics for deployment descriptions
and it may a0 define the format of packages. A component modd may aso define
processes for deployment, including component regigtration.

Component Model Implementations and Services

An important part of acomponent modd is the Sandardization of the run-time
environment to support the execution of components. Thisindudes the specification of

interfaces to both genera and more domain-gpecific run-time services. Generd services



03.12.00 15:14 10 Wei Sam_ComponentModel FINAL.doc

to support object-based component sysems indude object credtion, life-cyde
management, object- perg stence support, and licensing. Component models for
distributed sysems additiondly have to define servicesfor:

Other forms of communication, such as message queues

Remote event-based natification

L ocating remote services

Security
Component models supporting the construction of multi-tiered information systems may
specify data access APIs and services for transaction menagement and load baancing.

A
Vertical * Simulation
Domain icati
Specific Infrastructures * Telecommunication
p . * Process Automation
+ Services « Financial

« Healthcare

Horizontal Infrastructures + * Compound Documents
Services - System Management
General Component Model + * Interoperability
. * Meta-Data
Services .
Generality

Figure 1. From generd to domain-specific sandards



03.12.00 15:14 11 Wei Sam_ComponentModel FINAL.doc

Typicdly, acomponent-based design will reflect the tandardization processfrom
generd to more domain-specific services (see Figure 1). For example, agenera
component modd for digtributed sysems may form the base on top of which additiond,
more domain-specific, component infrastructures and services may be defined.
Horizonta sarvices and infrastructures provide additiond functiondity across multiple
domains. Typica examples of such saervices indude user interface management services,
such as compound documents, and system management services. Vertica services and
infrastructures support a particular domain. Examples are financid, hedthcare and
telecommunication services

An example for such afamily of sandardsthat is built on agenera component mode is
the object management architecture (OMA). The OMA is defined by the Object
Management Group (OMG), anonprafit organization with about 800 indudtrid and
academic members (Wwww.omg.org). At the heart of thismodd is the common object
request broker architecture (CORBA), an interoperability standard for distributed object-
based applications supporting various implementation languages. CORBA sarvices and
CORBAfadilities are specifications built upon CORBA. CORBAsavices are a sandard
for generd sarvices of didtributed object-systems while CORBAfadilities Sandardizes
horizontal services. The most specidized sandards of the OMA are vertical services for
various goplication domains,

Other wdll-known component modds, such as Microsoft's COM family and Sun's
JavaBeans, define amilar sarvicesthat are ussful for sysemsin multiple domains Al
mgor component modd implementation vendors are dso deve oping domain-specific
interaction and composition sandards.

Conclusion

We introduced the concept of component models using an andogy comparing operating
systems with component mode implementations. Operaing sysems provide the basic
component mode for goplications through interfaces and services and provide integration
and communication mechaniams. CBSE makesiit possible to congder fine-grained
components to enable more flexible component compaosition. CBSE will enhance the
level of software reuse and provide necessary component models for establishing
component marketplaces &t this level. Standardized component models are necessary to
redize thisvison.

We have presented the basic concepts and principles of component modds and
component mode implementations. Component models define standards for interfaces,
naming, interoperability, customization, compostion, evolution, packaging and
deployment. Additiondly, soecifications of run-time environments and services are
needed to Sandardize component modes. Typicdly, component modd implementetions
exigt on top of an operaing system. However, some operding sysems, suchasMS
Windows™, have dready begun to incorporate component modd implementations.
Eventualy, operating sysems may directly serve as component modd implementations
for CBSE.



03.12.00 15:14 12 Wei Sam_ComponentModel FINAL.doc

References

A.D. Birdl and B.J. Nelson, "Implementing Remote Procedure Cdlls', ACM
Transactions on Computer Systems, Val. 2, No. 1, February, 1984, pp. 39-59.

M. Buchi and W. Weck, "The Greybox Approach: When Blackbox Specifications Hide
Too Much", Technica Report No 297, Turku Centre for Computer Science, ISBN 952-
12-0508-3.

Erich Gamma, Richard Hdm, Raph Johnson, John Vlissides Design Patterns - Elements
of Reusable Object-Oriented Software, Addison-Wedey, 1995.

J Gading, B. Joy, G. Stedle, The Java Language Specification, Addison-Wedey, 1996.

G.Kiczdes, JdeRivieres, D.G.Bobrow, The Art of the Metaobject Protocol, MIT Press,
1991.

Linux Standard Base, " Standardizing The Penguin”, http:/Aww.linuxbase.org/, 2000.

Pettie Maes, Computational Reflection, PhD Thess, Laboratory for Artificd
Intelligence, Vrije Univergteit Bruessdl, Belgium, January 1987.

Object Management Group, "A Discussion of the Object Management Architecture’,
http:/mww.omg.org, January, 1997.

Object Management Group, "The Common Object Request Broker: Architecture and
Specification”, Rev. 2.3.1, http:/mww.omg.org, October, 1999.

D. L. Panas, "A technigue for software module specification with examples.
Communications of the ACM, Val. 15, No. 5, May, 1972, pp. 330-336.

M. Petre, "Why Looking Iant Always Seeing: Readership Skills and Graphica
Programming’, Communications of the ACM, Val. 38, No. 6, June, 1995, pp. 33-44.

H. Praehofer, J. Sametinger, A. Stritzinger, " Concepts and Architecture of a Smulation
Framework based on the JavaBeans Component Mode", Journal of Future Generation
Computer Systems, Specid |ssue on Web-based Smulation, Elsevier Science, Val. 16,
2000.

C. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison
Wedey/ACM Press, 1997.

C. Szyperi, C. Piger, "BlackBox: A Component Framework for Compound User
Interfaces’, Implementing Application Frameworks: Object-Oriented Application
Frameworks at Work (edited by M. Fayad, D.C. Schmidt, R. Johnson), John Wiley &
Sons, Inc., New Y ork, 1999.



03.12.00 15:14 13 Wei Sam_ComponentModel FINAL.doc

R. Weinreich, A Component Framework for Direct Manipulation Editors, Proceedings
TOOLS25, Mdbourne, Austrdia, IEEE Computer Society Press, November, 1997, pp.
93-101.

Side-Bars

Operating sysems provide
An abdraction of the underlying hardware (infrastructure)
An execution environment, and

- Bascsvices

for gpplications

Component modes define sandards for
Naming, metadata, component behavior specification, component implementation,
interoperability, customization, compodtion, and deployment.

Component mode implementations are based on a particular component modd. They
provide

A rurtime envirorment

Basic sarvices

Horizontd services that are ussful across multiple domains

Verticd sarvices providing functiondity for a particular domain
for software components.

Biographies

Rainer Weinreich is assgtant professor at the Johannes Kepler Universty in Ling,

Audria His main reseerch interests lie in the area of component-based and distributed
software architectures. Heisthe lead architect of saverd frameworks for object-oriented,
component-based, and distributed software syslems and currently is leeding a project for
agent- based remote diagnos's and supervison of process automeation systems.
Information about his research activities can be found at http:/AMww.sve.uni -
linz.ec.at/wenreich

Johannes Sametinger is associate professor a the Johannes Kepler Univeraty in Linz,
Audria He currently holds a postion a the Universty of Regensburg, Germany . His
research interests include software engineering, software documentation, software

mai ntenance, software reuse, object- oriented programming, component-based
programming, and programming environments. Information about his research activities
can befound a http://mww.sveuni -linz ac.at/sametinger.




