
1

Comparison of JavaBeans and ActiveX – A Case Study
D. Birngruber, W. Kurschl, J. Sametinger

Johannes Kepler Universität Linz, A-4040 Linz, Austria
Email: birngruber@ssw.uni-linz.ac.at, Werner.Kurschl@acm.org, sametinger@acm.org

ABSTRACT
We have investigated the component models
JavaBeans and COM/ActiveX, their support
for component-based software development as
well as their commonalties and differences.
The main objective has been to find out the
component models’ usefulness in building real-
world applications and to compare the under-
lying component models based on a concrete
sample application. In this paper we briefly
introduce the component models JavaBeans
and COM/ActiveX, and present a simple appli-
cation with two different implementations
based on these models. Finally, we make a
comparison of the component models.

Keywords
JavaBeans, COM/ActiveX, resource planer,
comparison, case study

1 INTRODUCTION
Component-based software engineering means
development of software systems by compos-
ing reusable components. Components them-
selves shall only be developed when not being
available on the market. This may lead to re-
duced time to market, improved software
quality, and less maintenance effort. The reus-
ability of components has to be increased in
order to realize this vision. We need global
component models in order to allow the crea-
tion of global component markets. Addition-
ally, methods, techniques, tools and process
models have to be developed and adapted for
the component-based creation of software
systems. But before component-based software
technologies can successfully contribute to
improved software engineering, several ques-
tions have yet to be answered. For example:
What is a component? How do we develop
components? Where can we buy components?
How can we compose components? How can
we describe and retrieve components? These
questions are not yet answered, neither from a
scientific nor from a practical point of view.

For the case study presented in this paper we
have investigated the component models Java-
Beans by Sun Microsystems and COM/Ac-

tiveX by Microsoft, their support for compo-
nent-based software development as well as
their commonalties and differences. The main
objective has been to find out the component
models' usefulness in building real-world ap-
plications. The starting point of the case study
was a JavaBeans implementation of a resource
planner [1], which had been reimplemented in
COM/ActiveX in order to allow a comparison
of the two underlying component models
based on a concrete sample application.

In Section 2 the component models JavaBeans
and COM/ActiveX will briefly be introduced.
In Section 3 we present the resource planner
with its two different implementations. The
comparison of the component models will be
presented in Section 4. Conclusions will be
drawn in Section 5.

2 COMPONENT MODELS
On the one hand, there are two competing
component models, JavaBeans and COM/Ac-
tiveX which represent de-facto-standards and
are based on proprietary developments. On the
other hand, the Object Management Group
(OMG) has developed various standards of an
Object Management Architecture (OMA),
with the Common Object Request Broker Ar-
chitecture (CORBA) being the one known
best. CORBA is intended for the communica-
tion of distributed objects that can be imple-
mented in various programming languages.
Therefore, problems are being addressed that
are of importance in the context of components
and component models. We will consider only
JavaBeans and COM/ActiveX in this paper.

There is still no wide consensus on the defini-
tion of the term component. We regard the
definition provided in [10] as a good starting
point. In addition, we consider aspects men-
tioned in [6] as being important in this context.
Thus, by component we mean a unit of compo-
sition with contractually specified interfaces
and explicit context dependencies with appro-
priate documentation and a defined reuse
status. We also still lack a consensus on what a
component model really is, even though there



2

are components available already. All we
know is that such a model has to define how
components present themselves to their envi-
ronment and how they can be used and cou-
pled. Subsequently, we give a short introduc-
tion to JavaBeans and COM/ActiveX, the two
component models used in our case study.

COM/ActiveX
The component object model (COM) by Mi-
crosoft [2] consists of components (coclasses),
interfaces and a mechanism to find and use
components as well as various services. Com-
ponents represent implementations of various
interfaces. A COM interface defines a set of
functions. COM objects are instantiations of
components. A unique class identifier (CLS-
ID) is assigned to every component and a
unique interface identifier (IID) to ever inter-
face. Interfaces are being described by the Mi-
crosoft interface description language (MIDL)
and are independent of any programming lan-
guage. COM objects can be programmed in
any programming language as long as the gen-
erated object code adheres to the binary stan-
dard of COM. COM is supported by languages
and tools like Visual C++, Visual J++, Visu-
alBasic, Borland Delphi and PowerBuilder.

COM objects are provided by a COM server
which may run in the same address space, be-
ing realized as a dynamic link library (DLL),
or in a separate address space as an executable
(EXE). A COM server may also run on the
same or on a different machine as the client.
Distributed COM (DCOM) is used when
communication is necessary across process
and/or machine boundaries.

In order to get a component with a specific
class identifier at run-time, the procedure Co-
CreateInstance is called. (All procedure names
of the COM library start with Co which stands
for COM.) CoCreateInstance requires a class
identifier and an interface identifier as pa-
rameters. It creates a new instantiation of the
specified class and returns an interface of the
type required. The client always receives a
pointer to the requested interface, but never a
pointer to the component itself. The registry is
used in order to find a COM object with a
certain class identifier. The registry determines
which server is capable of creating a specific
object. When necessary, the specific server is
being started. For in-process servers, i.e., serv-
ers running in the same address space than the

client, the appropriate dynamic link library is
loaded. Out-of-process servers, i.e., servers
running in separate address spaces, will simply
be started as applications. The started COM
server contains a separate class factory object
for each class in order to create instances of
that class.

Every COM object implements the interface
IUnknown, that defines the methods QueryIn-
terface, AddRef and Release. QueryInterface
allows the client to determine at run-time,
whether a component provides a certain inter-
face, and, if available, to request that interface.
The other two methods are used to administer
memory resources by using reference count-
ing. AddRef increments a counter for each re-
quested interface. Whenever a client does not
need an interface any longer, it can release it.
Thus, COM is able to stop a server and release
resources that are no longer needed as soon as
the counter decrements to zero.

COM has been extended by concepts and
mechanisms for distributed computing. Ac-
tiveX controls serve as server components.
They combine automation services and com-
pound documentation services, thus, creating
flexible relationships between containers and
servers. ActiveX controls are embedded serv-
ers that can be activated within a component.
They use the automation service in order to
provide its methods and properties to the con-
tainer. The container also uses the automation
service in order to receive event notifications
from the control. This allows, among other
things, to integrate ActiveX controls into
Internet applications, i.e., they can be embed-
ded into HTML pages.

JavaBeans
JavaBeans has been introduced in 1997 and
represents the component model based on Java
[8]. A bean is a reusable software component
that can be visualized and interactively ma-
nipulated in builder tools. Builders can range
from simple layouting tools to extensive, vis-
ual, component-based programming environ-
ments. JavaBeans supports the following con-
cepts:

- properties: Properties can be set interac-
tively by the user and be used for the com-
munication among beans. A distinction is
made among standard properties, indexed
properties (property arrays), bound prop-
erties (properties signaling their modifica-



3

tion) and constrained properties (modifi-
cations of these properties can be vetoed by
other components).

- events: Events are used as a communication
vehicle among beans.

JavaBeans is based on Java’s object model,
which allows the usage of classes and objects
in a well-known manner. Interfaces to beans
are defined by a set of methods that define
properties and events of beans. Interfaces of
beans may be deducted from interfaces of Java
classes, which can be done by means of the
reflection and introspection mechanism. How-
ever, interfaces of beans have to adhere to
certain conventions, called patterns in Java-
Beans terminology. For example, properties
are defined by a pair of setter- and getter-
methods, a property name is defined by two
methods setName and getName, presuming
they have the right parameters. Rather than
adhering to naming conventions a bean can
also be defined by an additional BeanInfo class
providing meta information about the bean.

A bean can be represented by a single simple
Java class. A bean can also comprise many
Java classes as well as resources like images
and videos. Complex beans are usually stored
in and distributed by means of compressed
archives, i.e., JAR files. Java’s serialization
mechanism is used to make bean instantiations
persistent. At run-time, Java’s garbage collec-
tion is used to get rid of any bean instantia-
tions that are not in use anymore.

JavaBeans had not been designed for distrib-
uted systems. However, beans may communi-
cate across process boundaries, e.g., over the
Internet, by means of Java’s remote method
invocation (RMI) mechanism. RMI provides a
transparent communication vehicle among
objects and, thus, beans, that run on different
virtual machines (JVM). Services needed for
distributed JavaBeans architectures have been
considered in Enterprise JavaBeans (EJB) [9],
which has not been available when conducting
the case study described in this paper. Further
details about JavaBeans and closely related
technologies can be found in [8].

3 CASE STUDY
A resource planning tool can be used for vari-
ous purposes. We have developed such a tool
especially for the coordination of breaks and
their supervision in schools. However, since
we have kept extensibility in mind, the tool

could easily be adapted to other domains. This
section briefly describes the requirements on
the tool and a sample scenario. Subsequently
the two implementations in JavaBeans and
COM/ActiveX will be presented.

The implementations were done in two sepa-
rate projects. The JavaBeans project was done
before the COM/ActiveX project. Design and
architecture had been defined in the JavaBeans
project and were available to the team of the
COM/ActiveX project, see [1]. The overall
architecture was designed independently of a
specific component technology. The suitability
of a component model to develop a given ar-
chitecture was part of the investigation.

Requirements
There are three different types of users: the
person responsible for the resource plan, the
person creating the resource plan, and the per-
son involved in the plan (i.e., the person su-
pervising a break). The system has to admin-
ister information about supervisors, i.e., name,
dates and times not to be assigned to that per-
son, kind of employment, etc. We distinguish
between regular employees and auxiliary em-
ployees, because this influences the maximum
number of breaks a person may supervise.
Based on this information, a resource plan has
to be created that assigns two to three people
to each break and picks one of these persons,
which has to be a regular employee, to be re-
sponsible for the supervision.

Each resource plan has a life cycle that is de-
scribed by three states: development, verifica-
tion, and released. Released plans indicate the
date when they will become effective. They
remain valid until another released plan be-
comes effective. Only the person responsible
for the resource plan may change its status.

Resource plans have to be accessible by vari-
ous people in order to allow their flexible
creation and modification. Supervisors may
read plans that have the states verification or
released. Also, they may modify information
about their person, e.g., times when they must
not be assigned to supervise. All data is kept
on a server and may be accessed from clients
with modern user interfaces.

Sample Scenario
Mrs. Miller is responsible for creating a re-
source plan of a certain school. First she has to
input all information about potential supervi-



4

sors. She delegates this task to her secretary,
Mrs. Gandy, who thus becomes the creator of
the resource plan. Mrs. Gandy inputs all in-
formation known to her; e.g., she excludes
dates when she knows people will be out of
town. Mr. Graham, a teacher at the school and
thus a potential supervisor, adds additional
excluding dates not yet known to Mrs. Gandy.
Mrs. Gandy then creates a new resource plan
that is under development and assigns teams of
two to three people to all the breaks. Then
Mrs. Miller inspects the plan, makes minor
corrections and modifications, and modifies its
state to verification, i.e., she gives public no-
tice that the resource plan is to be checked by
teachers. Any wishes for modification have to
be reported to Mrs. Gandy, who collects all the
wishes and hands them over to Mrs. Miller.
Mrs. Miller makes the final decision on any
assignments, checks whether there are any
conflicts, and finally releases the plan. Con-
flicts occur when a person is assigned to su-
pervise a break even though he is not available
at that time. Conflicts have to be shown by the
resource planer.

Implementation
In this section we will describe the architecture
of the resource planer. We have chosen an ar-
chitecture of four layers, i.e., the data layer,
the access layer, the application layer, and the
user interfaces layer. They will be described
subsequently.

- data layer
The data layer describes the application
specific data model with necessary condi-
tions to guarantee integrity and consistency.
The data layer is independent of the appli-
cation in order to make the components re-
usable for similar applications. Addition-
ally, the data layer does not have any
references to any of the other layers.

- access layer
The access layer serves as a communication
vehicle between the data layer and the ap-
plication layer. It provides various views
and ways of modification to the data layer.
The client/server architecture as well as
mechanisms for manipulation and synchro-
nization are modeled in this layer. The ac-
cess layer should have references to the
data layer only. However, we had to make
exceptions in a few cases.

Figure 1: Client of Resource Planer

- application layer
The application layer implements all trans-
actions for the realization of system be-
havior as well as the management of the
user interface.

- user interface layer
The user interface layer contains all graphi-
cal user interface elements and their layout,
see Figure 1.

It goes without saying that the chosen archi-
tecture does have an influence on the degree of
reusability of available components. It is use-
ful to check and perhaps modify the architec-
ture according to the availability of reusable
components.

Implementation in JavaBeans
The user interface layer of the client is based
on predefined bean components which provide
only rudimentary functionality. Therefore, ad-
ditional application independent user interface
components had to be developed. For the ap-
plication itself various components were de-
veloped as Java classes in a first step. Then
they had been extended to JavaBeans compo-
nents without much effort.

For the application layer most of the needed
functionality had to be implemented by hand
in order to compose components of the user
interface layer, the access layer and the data
layer. Components of the user interface had to
be enriched with code in order to provide the
right behavior of the system based on user in-
put. Similar to the user interface layer, the ap-
plication layer had been developed in a proto-
typical manner.

The architecture of the access layer had been
finished in a single step. The reason for this
efficient implementation process lies in the
fact that we were able to map the architecture
to the mechanism for remote method invoca-
tions (RMI). RMI is perfectly suited for the



5

object model of Java. Therefore, we only had
to implement an additional service for the dis-
tribution of events across process boundaries
(remote event service).

The data layer consists of domain-specific
components that are used by components of
the other layers. The architecture of this layer
had been redesigned several times. A redesign
comprises the activities of design, component
search, component adaptation, partial imple-
mentation for a prototypical evaluation, and
refinement of the design. The reason for sev-
eral redesign cycles was based on the goal of
having the entire system available as a reus-
able component as well as components espe-
cially from the data layer and the application
layer. We believe that the number of redesigns
stems from the fact, that it is a difficult task to
develop components designed for later reuse.

A description of the components goes beyond
the scope of this paper. Further details of the
implementation can be found in [1].

Implementation in COM/ActiveX
COM/ActiveX components may be imple-
mented in several programming languages. For
evaluation purposes we decided to implement
the server in C++ and the client in Java.

The implementation of the client user interface
layer is based both on graphical user interface
components of the Windows Foundation
Classes available under Visual J++ and on
ActiveX controls available from various ven-
dors.

Similar to the JavaBeans implementation, the
application layer contains mostly components
for the composition of components from the
user interface layer and the data layer.

Components of the user interface layer and the
application layer are part of the client. Com-
ponents of the data layer on the server side are
being accessed by means of the access layer.
For this layer there were no developments nec-
essary, because the functionality of DCOM
was sufficient for our purposes.

The data layer contains domain-specific COM
objects that provide interfaces to the other lay-
ers.

4 COMPARISON
We will compare the COM/ActiveX and the
JavaBeans component platforms based on the
experiences in the case study. Additionally, we

will discuss problems we identified with these
component platforms.

Learning curve
The time needed to become familiar with the
COM/ActiveX component platform was sig-
nificantly higher compared to the time needed
for the JavaBeans platform. The project mem-
bers needed four to six months until they were
able to build and use COM/ActiveX compo-
nents implemented in C++. This seems to be
rather typical for such projects according to
[4]. The time needed to become familiar with
JavaBeans was about 2 weeks. The difference
in the learning curve has several reasons:

- The project members were used to design
and code object-oriented programs. In the
COM world the term object does exist, but
with a different meaning compared to the
traditional object-oriented model. The Java-
Beans model is based on the traditional
object-oriented model [5].

- Many books deal with COM/ActiveX pro-
gramming but with different quality. This
increased the effort for comparison and se-
lection of the right literature.

- The project members had no experience in
MS-Windows programming. Therefore,
they had to learn the Microsoft Interface
Definition Language (MIDL), different
frameworks and libraries like MFC, WFC
and ATL. Extensive frameworks and li-
braries make it hard for a COM/ActiveX
novice to master the complexity. However,
they allow to build complex COM compo-
nents faster and more easily than building
them from scratch as soon as the main parts
of the frameworks and libraries are well
understood.

- The project members had experience in
Java programming.

Résumé: We regard JavaBeans to be superior
to COM/ActiveX with regard to the learning
curve.

Development environment
The acquisition of a proper development envi-
ronment or builder tool for developing Java-
Beans was a time consuming process at the
beginning of the implementation phase. The
market for JavaBeans development environ-
ments was still immature and proper tools with
the desired functionality were missing. The
market has changed and now various tools



6

from different vendors offer JavaBeans sup-
port. The tools offer different functionality and
quality which increases the effort for compari-
son and selection. A recommendation for a
specific tool is problematic, because new ver-
sions of the tools with changed functionality
and quality are appearing quickly on the mar-
ket. The chosen products for the JavaBeans
development were IBM VisualAge and Sy-
mantec VisualCafe.

Different vendors offer development environ-
ments for COM/ActiveX development. We
decided to pick tools from the palette offered
by Microsoft because this seemed to best guar-
antee conformance with the COM platform.
The tools had many similarities which eased
the change from one programming language
and tool to another. The chosen products were
Visual J++, Visual C++ and VisualBasic.

Résumé: We regard COM/ActiveX to be supe-
rior to JavaBeans with regard to the develop-
ment environments.

Implementation
The implementation phase of both the Java-
Beans and the COM versions consisted of sev-
eral design, redesign and implementation cy-
cles. When building the COM version the
cycle included the search for ActiveX compo-
nents. According to [11] there are much more
ActiveX controls available on the market than
JavaBeans components. In the meantime the
number of available JavaBeans may have in-
creased but is still far from the number of
available ActiveX controls.

The development teams encountered several
implementation relevant problems when
building the COM and the JavaBean version.
Problems encountered when developing COM
components include:

- Reference counting: COM uses reference
counting rather than automatic garbage
collection. A COM server can be shut down
when the clients have released all their ref-
erences to COM interfaces provided by the
server. The server depends on a careful ref-
erence handling by the client which can be
more error prone when the number of used
interfaces increases. Different program-
ming languages offer different utilities for
this problem like smart interface pointers
in C++ or the automatic reference counting
and releasing of the Microsoft JVM.

- MIDL: The Microsoft Interface Definition
Language offers different data types. How-
ever, they cannot be used in every COM
aware programming language. Therefore,
using the wrong data types for an interface
definition can exclude a programming lan-
guage from implementing the interface. An
overview and a least common denominator
among C++, VisualBasic and Java is given
in [2].

- DCOM: Client/server applications based on
DCOM are not able to run on a regular
Windows 95 operating system. However,
Microsoft offers a special DCOM extension
for Windows 95 which has to be installed
separately. We recommend to run DCOM
servers on Windows NT because not all
servers work with the Windows 95 DCOM
extension.

Problems encountered when developing the
JavaBeans components include:

- Icons: Many builder tools use icons to
visually represent JavaBeans. This requires
that a JavaBean is delivered with its Bean-
Info class. According to the JavaBeans
specification [7] a JavaBean can but has
neither to provide a BeanInfo class nor an
icon. It turned out that building a BeanInfo
class without tool support is a tedious task,
especially during the implementation phase
when the interfaces of the beans still get
modified.

- Names: Typically builder tools allow the
visual manipulation of JavaBeans. Some
builder tools use names to identify different
components of the same type. These names
are used for building a visual representation
of the wiring code. The JavaBeans specifi-
cation does not mention such names. The
base class for all visual components has a
name property but not all builder tools, e.g.,
Symantec Cafe, actually use it. Manipulat-
ing JavaBeans with different builder tools
can cause problems because the visual rep-
resentation of the manipulation may not be
displayed.

- Bean container: The original beans specifi-
cations did not reflect on containment.
Hence, JavaBeans often form a logical
containment hierarchy. The Bean extension
Glasgow offers such a functionality but for
our case study Glasgow was still in the
specification process. Currently Glasgow is



7

available but not all development environ-
ments have it integrated already.

- Code generation: Builder tools generate
code based on visual manipulations. The
way how and where code is generated has
not been defined. Different tools use differ-
ent strategies to generate the wiring and
customization code. As a consequence, it is
nearly impossible to change the develop-
ment environment during the development
phase. However, a finished JavaBean may
be used with different builder tools.

Résumé: ActiveX is superior to JavaBeans
with regard to the implementation phase. Ac-
tiveX components can be developed with dif-
ferent programming languages including Java.
The COM/ActiveX platform offers more func-
tionality and there are more components on the
market than for JavaBeans.

Documentation
The Java source code contains special tags in
the comment of classes and methods in order
to allow the generation of HTML documenta-
tion. The tags are extracted with a special tool
(javadoc) which is delivered both in form of an
executable binary and in source code form
with the JDK. The documentation of the class
libraries within the JDK was produced with
javadoc. However, special features of a bean
like properties and events cannot be docu-
mented with this tool. The source code of the
tool can be modified to support project spe-
cific documentation but this requires extra ef-
fort. The tool itself turned out to be memory
intensive especially for large documentation.
COM/ActiveX does not offer a documentation
tool like javadoc. But COM/ActiveX compo-
nents written in Java can be documented the
same way as JavaBeans.

The search for components is a tedious task
because there are no appropriate tools for
browsing and retrieving. This is unacceptable
because the components offered on the Inter-
net cannot be searched in a common way. The
documentation of both component models
should have foreseen information about func-
tional and non functional requirements like
resource usage, capacity, latency, performance
and reliability.

Résumé: The documentation quality for both
component models needs major improvements.
There is no appropriate tool support for brows-
ing and retrieval.

Security
The use of components within HTML docu-
ments over the Internet requires security
mechanisms. Attacks could harm the client
machine as well as the user. Possible aggres-
sions include:

- Integrity and consistency of data and proc-
esses
through the deletion of data on the hard
disk or through the abnormal termination of
processes.

- Availability of resources
through the creation of processes with high
scheduling priority or high memory usage.

- Privacy of user or company
through publishing and sending private data
to unauthorized persons.

- Annoyance of users
through playing noise or through displaying
unwanted images.

Such attacks can be performed in several ways.
Especially dynamically loaded components
over the Internet can be what is called Trojan
horses. Trojan horses perform an official task
– like chess playing with the user – and an un-
official, vulnerable task – like reading the hard
disk of the user and sending private data.

The security model of Java offers a mechanism
to prevent external or untrusted code to per-
form system critical operations – like access-
ing the user's hard disk [3]. In contrast,
ActiveX components which are dynamically
loaded over the Internet are not restricted in
their functionality.

Résumé: JavaBeans is superior to COM/Ac-
tiveX with regard to security on the Internet.

Distribution
RMI is one possible communication mecha-
nism for distributed Java programs. It is an
application programming interface included in
the JDK. Remote objects are accessed via their
interfaces which allows a homogenous inte-
gration of local and remote method invoca-
tions. RMI does not offer services like an
event distribution service. We implemented
such an event distribution service with low
effort. RMI and CORBA can be integrated.
Therefore, CORBA services can also be used.
The distribution mechanism of DCOM has
offered enough functionality in order to realize
our distributed client/server architecture.



8

Résumé: Both component models offer an ac-
ceptable communication mechanism for dis-
tributed systems.

Language Independence
An advantage of COM/ActiveX is its pro-
gramming language independence. Compo-
nents can be developed in the preferred pro-
gramming language which allows the
developer to choose her preferred program-
ming language and paradigm. The interfaces of
a COM component are described with MIDL.
The usable data types are restricted to the
available programming language – MIDL
mapping. Normally JavaBeans are written in
Java and the code is compiled to Java byte
code. JavaBeans can, in principal, be written
with other languages as long as the compiler
compiles the programmed code into Java byte
code. As far as we know a byte code compiler
for other languages is not commercially avail-
able yet.

Résumé: COM/ActiveX is superior to Java-
Beans with regard to language independence.

Platform Independence
One important aspect of the popularity of Java
is its operating system independence. This in-
dependence is still not reached at all points
and a final test of software systems on at least
Unix and Windows platforms is required.
COM/ActiveX has been built for one platform,
i.e., Microsoft Windows. But COM has been
ported to UNIX operating systems like Sun
Solaris, DEC Alpha (Software AG, EntireX).
The developed and reused COM/ActiveX
components were not tested on the ported
COM platforms.

Résumé: JavaBeans is superior to COM/Ac-
tiveX with regard to platform independence.

Summary
An overview of the comparison is given in Ta-
ble 1 which shows a well-balanced picture for
both component models. The strengths of
JavaBeans are the short learning curve, the
security model (referred to as the sandbox
model) and its platform independence. The
strengths of COM/ActiveX are the provided
development environments, the big number of
available components and the independence of
programming languages.

Category
COM/

ActiveX
Java-
Beans

Learning Curve - +
Development environment + -
Implementation + o
Documentation - -
Security - +
Distribution + +
Language independence + -
Platform independence o +

Table 1: Summary of the Comparison

Documentation should be improved for both
models by providing appropriate browsing
tools, retrieval tools and documentation tech-
niques. Both component models allow to build
distributed software systems with an accept-
able amount of design and programming effort.

Both component models allow the creation of
software components with different granular-
ity, i.e., from small grained visual components
to complex components. Large distributed
software systems often require different serv-
ices like transaction, message queuing, load
balancing, directory services, etc. These serv-
ices are available for COM/ActiveX. For the
Java world many of these services are now
available, too, but some are still in the specifi-
cation process and not available yet.

The comparison presented in this paper can
help to make a decision for one component
model but other relevant project dependent
circumstances have to be considered as well.
Such circumstances can cover the target plat-
forms, integration with existing systems, and
performance. The strengths of JavaBeans in-
clude its simplicity and platform independ-
ence. The number of available components and
the language independence are considered to
be the main advantages of COM/ActiveX.
Documentation of available components rarely
covers non-functional requirements like reli-
ability, fault tolerance, correctness, security
and performance. The question is: How suit-
able are poorly documented components off
the shelf? Some projects do not allow the reuse
of external components, like projects for nu-
clear power plants or for security systems and
the number of available components may not
influence the decision process.



9

This comparison does not cover all scientific
relevant categories, e.g., a discussion about the
object models. The basis of the comparison
was a qualitative approach and not a quantita-
tive measurement.

5 CONCLUSION
There are many similarities between COM/Ac-
tiveX and JavaBeans. A clear winner in the
race of component-based programming cannot
be determined. In case someone had to choose
between the two component models, several
factors should be taken into account. Java-
Beans has advantages in that it is a simple
model with a low learning curve. But it lacks a
wide selection of reusable components. The
availability of components is a definite plus
for COM/ActiveX.

For components that may be considered for
potential reuse, there is almost never informa-
tion about the quality of the component, i.e., it
is hard to say whether the component is reli-
able, correct, efficient, secure, etc. So even for
high quality components it may be a better
solution to invest in an own development. This
situation may make the number of currently
available components for a component model
less significant for various projects.

The number of available services like transac-
tion server, message queuing or name service
may be crucial for the development of com-
mercial, distributed systems. COM/ActiveX
offers a wide range of such services. For Java-
Beans various specifications of such services
are available and implementations will hope-
fully follow soon.

For the development of components for dis-
tributed systems, especially when used in the
Internet, the Java security model can be used,
for example, to restrict access to local re-
sources. However, this model cannot avoid
unwanted use of resources like starting many
threads. COM objects enjoy full privileges,
being able to access the file system without
any restrictions or to shut down the computer.
Therefore, we would refrain from using COM/
ActiveX in the Internet domain.

Most personal computers run under Microsoft
Windows. COM/ActiveX performs signifi-
cantly better on this platform than the inter-
preted byte code of JavaBeans. This fact
makes the choice of COM/ActiveX obvious in
many situations. However, in heterogeneous

environments, e.g., when using servers on both
the UNIX and the Windows platform, the use
of JavaBeans becomes interesting again, even
though COM/ActiveX has been ported to
UNIX environments.

It is impossible to be clearly in favor of either
COM/ActiveX or JavaBeans. It is necessary to
precisely be aware of a project’s goal as well
as to closely follow new developments in the
arena of component models. This paper pro-
vides a decision basis for practitioners as well
as for scientists by showing what we believe
are the major strengths and encountered prob-
lems during a development project.

6 REFERENCES
[1]Dietrich Birngruber, Werner Kurschl,

Gustav Pomberger, Komponentenbasierte
Softwareentwicklung – Ergebnisse einer
Fallstudie, Bericht, Institut für Wirtschaft-
sinformatik, Johannes Kepler Universität
Linz, 1997.

[2]Don Box, Essential COM, Addison-Wes-
ley, 1998.

[3]James Gosling, Henry McGilton. The Java
Programming Language, OOPSLA '95
Tutorial Notes, Austin, TX, 1995.

[4]David J. Kruglinski, Insight Visual C++,
V5.0, Microsoft Press, 1997.

[5]Bertrand Meyer, Object-Oriented Software
Construction, Prentice Hall, 1988.

[6] Johannes Sametinger, Software Engineer-
ing with Reusable Components, Springer-
Verlag, 1997.

[7]Sun Microsystems, JavaBeans API Specifi-
cation, 1997, see
http://java.sun.com/beans/docs/spec.html

[8]Sun Microsystems, JavaBeans Documen-
tation, 1999, see
http://java.sun.com/beans/docs/index.html

[9]Sun Microsystems, Enterprise JavaBeans
Technology, 1999, see
http://java.sun.com/products/ejb/

[10] Clemens Szyperski, Component Software
– Beyond Object-Oriented Programming,
Addison-Wesley, 1997.

[11] Clemens Szyperski, Emerging component
software technologies – a strategic com-
parison, Software Concepts & Tools, Vol.
19, No.1, 1998.


