
Component Frameworks – A Case Study

Herbert Praehofer, Johannes Sametinger, Alois Stritzinger
Johannes Kepler University, Linz, Austria

hp@cast.uni-linz.ac.at, sametinger@acm.org, stritzinger@swe.uni-linz.ac.at

Abstract

This paper reports on an effort to use both the system theoretic DEVS (discrete event
simulation) formalism and the JavaBeans component model as a basis for a component-
based discrete event simulation framework. The result of the synergism of DEVS and
JavaBeans is a powerful component-based simulation framework together with a set of
flexible bean components for building simulation systems.

Component frameworks are dedicated and focused architectures with a set of policies
for mechanisms at the component level. In this paper we describe the component frame-
work we have developed for discrete event simulations. Simulation components are based
on this framework and can be composed for the creation of various simulation scenarios.

1. Introduction

We have developed a set of JavaBeans components for the creation of discrete event
simulations. The goal was to investigate how discrete event simulation applications can
profit from an up-to-date component technology. The idea was to create a component
framework for discrete event simulation, a set of basic simulation components together
with visualization and animation components that can be arranged and connected on a
worksheet. The modeling approach is based on the DEVS, a system theoretic formalism
for discrete event modeling that provides a theoretic framework for modular, hierarchical
modeling [5, 6].

Component frameworks are dedicated and focused architectures with a set of policies
for mechanisms at the component level [3]. Component frameworks have similarities with
application frameworks. They provide a framework for components rather than objects but
are not necessarily used for the creation of entire applications. A component framework
for discrete event simulation has to provide mechanisms for simulation control and item
flow. Simulation is controlled by events that activate components. In order to be part of
the simulation, components have to be registered for events at certain points of time. Ad-
ditionally, components have to process, provide and receive items, thus allowing items to
flow from component to component and being processed by these components. In order to
enable item flow, all components have to adhere to a mechanism defined by the frame-
work.

In Section 2 we describe the component-based simulation methodology. The compo-
nent framework is described in Sections 3. Design considerations of the framework are de-
scribed in Sections 4. Conclusions are drawn in Section 5.

2. Component-based simulation methodology

A component-based modeling and programming framework for simulation applications
has to enable developers to interactively pick components from libraries and place them
onto a worksheet. Such components comprise simulation components as well as visualiza-
tion, animation and statistics components. As a next step, connecting these components
has to be accomplished, such that signals and data can be exchanged among them. Addi-
tionally, convenient interactive customization of parameters has to be supported. The
component system has to be simply executed and used as a simulation application or as a
more complex component in other simulation applications.

We envision a component-based simulation methodology which provides component
libraries for different purposes, different users, and different applications, see [1, 2]. Com-
ponents advocate and support a plug and play framework. It should be possible to develop
simulation systems with less effort by mainly selecting, extending, customizing, and con-
necting components. It should be less effort for developers to realize specific components
or specific simulation systems and environments. The component provider is faced with
the challenge of designing components in a way so that they can be reused in a wide range
of applications.

3. Component framework

Components for discrete event simulation need to have a common basis for basic
simulation principles, e.g., a common simulation time and a common mechanism for event
scheduling. Additionally, they need to have a common understanding of how items are
constituted and how item flow is realized. These aspects have to be defined in the compo-
nent framework. Any components being based on this framework may be combined for
construction of simulation scenarios. The component framework for discrete event simu-
lations consists of the simulation kernel and a set of interfaces for component coupling.
They will be described subsequently.

3.1. Simulation kernel

The simulation kernel provides the simulation infrastructure and implementation con-
cepts for the simulation components. The kernel is specific for different types of simula-
tions, e.g., there is an infrastructure for discrete event simulation, for continuous simula-
tion and for combined simulation.

For discrete event simulation, the kernel includes support for
- event scheduling and event handling,
- models, model containers and hierarchies of models,
- state variables and property change mechanism, and
- utility services for data collection and analysis.

In order to participate in a simulation scenario, a component has to register itself to the
simulation kernel, see Fig. 1. Additionally, it can register itself for activation at a certain
point of time. A simulation scenario is built by composing simulation components that
have to communicate with the simulation kernel, as well as components for visualization,
animation and statistics. Components that are not directly involved in the simulation, e.g.,
visualization components, do not have to be aware of the simulation kernel. Therefore, ar-
bitrary components may be included for animation, for visualization, and for statistical
evaluations.

Simulation Kernel

Simulation
Component

Simulation
Component

item
flow

Figure 1. Simulation kernel

The simulation kernel drives the simulation by processing events that have been regis-
tered by components. The effect of an event depends on the component that is activated
thereupon. For example, a component may generate or process items. The simulation ker-
nel does not have any influence on what events trigger. Additionally, the kernel does not
care about items. Components have to take measures to handle items and their flow
through the system, i.e., to receive items from other components and to provide items to
other components. In order to enable item flow, all components have to adhere to the same
mechanism, which is also defined in the framework, and described in the next section.

In order to enable communication between the simulation kernel and components, two
interfaces have been designed, interface DEVS and interface Resource, see Fig. 2. DEVS
defines the interface to the simulation kernel, whereas Resource defines a minimal inter-
face to components. The simulation kernel defines a routine to register components. This
is necessary to control a simulation run and, for example, allows the kernel to reset all
components before a new simulation run is started. The simulation kernel defines another
routine to register events, i.e., components are registered to be triggered at a certain simu-
lation time. These events are triggered by calling the routine trigger when the specific
simulation time has arrived.

3.2. Simulation components

For discrete process simulation we have identified the following principal types of ele-
ments:

- resource components, which are active or passive and may be occupied by items,
- items, which flow through a system of resource components, and
- glue components, which control item flow among resource components.

A simulation system, therefore, is viewed as consisting of several resource components,
where items are placed and processed, and a coupling structure which realizes the flow of
the items from one resource component to the next. Glue components decide which items
can flow from which resource components to the next based on requirements of items and
space availability of resource components. This is a general, abstract view which fits to all
types of discrete event simulation. Systems differ in what type of resource components are
used, the types of items used, the glue structure, and in particular, who is in control and
how is the control of the item flow. The components were designed according to those
principal types.

Resource

trigger()

reset()

DEVS

register(Resource r)

registerEvent(Resource r)

Figure 2. Interfaces DEVS and Resource

3.3. Resource components

Resource components form the key elements from which simulation systems are built.
They are specific for the application domain, i.e., there is a library of resource components
for different types of simulation, e.g., discrete event simulation (as discussed here). Re-
source components are crucial for the success of the component-based simulation frame-
work. It is the challenge to foresee a wide range of applications in the domain and provide
a set of easy-to-use and easy-to-extend components.

Resource components of discrete event simulations include what we call generators,
sinks, processors, queues, places, and delays. Generators make new items available after
some production time. Processors can process one single item at a time. Upon receipt of an
item they get occupied and immediately start processing. After some processing time, they
signal that an item is available and wait that it is accessed by another component. Delay
components are never occupied and can always receive items. They delay items for some
time and then make them available for access again. Place components can take one item.
They signal that they need an item when there is no one on the place. When they receive
an item they signal that they are occupied and that they have an item available for access.
Other components behave in analogous way.

A resource component can be active, i.e., it can do some processing on an item, or it
can be passive, i.e., it can only passively store items. In any case, their elementary func-
tions are to receive items, hold them, and provide them to other components. While a pas-
sive storage component will only store received items and provide them for access, an ac-
tive component will process received items, which will take some time, and afterwards
want to get rid of them. Also components may have space available, i.e., they may need or
be able to take further items.

Two interface definitions are crucial to the realization of item flow. These are the Re-
ceiver interface for components which may receive items and the Provider interface for
components which may provide items. Receivers may be occupied and not be able to re-
ceive further items. Providers signal the availability of items and provide access to them.
The interfaces for providers and receivers define methods to provide/receive an item and
to inspect/test an item. They also signal an event when they have/need an item. Addition-
ally, they signal an event whenever they actually provide/receive an item, see Fig. 3. For
example, a generator, i.e., a component generating items, only implements the provider
interface and makes new items available. More complex components are built by either
coupling together components in a hierarchical way or by implementing them in Java us-
ing elementary simulation functions. By implementing the provider/receiver interfaces,
they can be used in bigger coupled models according the same coupling concepts.

Receiver

needsItem

test(Item)

receive(Item)

ItemReceived

Provider

hasItem

Item inspect()

Item provide()

ItemProvided

Item

cloneItem()

getId()

provided(Provider p)

received (Receiver r)

property method eventLegend:

Figure 3. Provider, Receiver and Item interfaces

3.4. Items

Items are also described by an interface. They have a unique ID and provide several
methods that may be called when events occur, e.g., when the item has been received or
provided, i.e., when it has been moved on from a resource component, see Fig. 3. Compo-
nents can implement the provider/receiver interfaces in different ways. They can also im-
plement the item interface and, thus, be used as flowing items. Therefore, components are
not of a particular type but rather they play the role of a particular type. They may also
play various roles of different types. For example, a transportation component may on the
one hand serve as a container, i.e., be a resource for some items (a resource component),
but on the other hand it may flow as an item through the transportation system itself.

3.5. Glue components

The provider and receiver interfaces are not coupled directly, but rather additional glue
components are used. The general idea of glue components is that they listen to property
changes (hasItem and needsItem) of resource components and react to those by distribut-
ing items between providers and receivers based on an individual control scheme.

We use the event and bound property change concepts to realize event coupling and
communication in discrete event models. Models which rely on states of other models are
registered as listeners of the other model’s state property and are, thus, informed whenever
a change in state happens. For example, a processor needing a particular item registers it-
self as a listener of the needsItem property of the appropriate item provider. Everything
flowing through the system is regarded as being an item, e.g., tools needed to process
other items (work pieces). As soon as an item gets available, the processor is informed and
can access the item. Control and coupling can be arbitrarily complex, ranging from sim-
plest linear forwarder to a transportation system built up by a complex coupled model by
itself. Fig. 4 shows a glue component coupling one provider and two receivers. Thick ar-
rows from the glue component to the resource components designate method calls, thin ar-
rows from resource components to the glue component designate the flow of events.

Examples of prefabricated glue components are what we call forwarder, receiverDeci-
sionPoint and providerDecisionPoint. A forwarder realizes a direct flow of items from a
provider to the next receiver. It listens to the hasItem property of the provider and the
needsItem property of the receiver and, when both are true, takes the item from the pro-
vider and hands it over to the receiver. No control decision is needed here. An extension to
the forwarder is the receiverDecisionPoint. It is used to couple a single provider with a set
of receivers. The selection of the receiver of the next available item is based on a control
strategy, i.e., a component selecting from a set of receivers. Components realizing differ-
ent control strategies can be envisioned, for example, selecting at random, based on given
percentages, the receiver waiting longest, etc. In the same way a providerDecisionPoint
couples a set of providers with a receiver. With the mentioned glue components coupled
systems can be built which are typical for flow shop models.

A different coupling scheme should be used when modeling a robotized manufacturing
cell. Here the item flow and control scheme is much more complex. A robot has direct ac-
cess to the places in a cell and the control has to take the whole cell state into account.
Nevertheless, we use the same components and coupling principals. The cell controller
listens to the hasItem and needsItem properties of cell components and generates transport
commands to the robot. The robot then realizes item flow by accessing items from the
specified provider and by placing them on the specified receiver.

Glue
Component

Provider

hasItem

Item inspect()

Item provide()

ItemProvided
Receiver

needsItem

test(Item)

receive(Item)

ItemReceived

Receiver

needsItem

ItemReceived

test(Item)

receive(Item)

Figure 4. Glue component

3.6. Framework architecture

Fig. 5 depicts how the JavaBeans component model, the simulation component frame-
work, simulation components and regular JavaBeans components interrelate. JavaBeans
builds the foundation enabling any JavaBeans components to be included in simulation
scenarios. The simulation kernel is built on top of the JavaBeans component model and
contains the central event mechanism. All simulation components have to be built on top
of the simulation kernel. In addition, they have to adhere to the framework’s interfaces in
order to exchange items. Item distribution is separated from item processing by providing
resource components and glue components, thus providing more flexibility in building
simulation scenarios.

4. Design considerations

We have implemented the component framework in Java and the components as Java-
Beans [4]. JavaBeans provides an attractive platform-independent component model,
making our components platform-independent and allowing us to easily integrate compo-
nents for visualization, for animation, and for statistical evaluations from other sources.
JavaBeans offers simple mechanisms for component coupling, i.e., events and the property
change mechanism. The Java interface concept corresponds to the roles of components. A
component playing a particular role has to implement the corresponding interface.

In this section we describe design considerations of the component framework. There
were two central design decisions. First, in the simulation kernel we had to decide issues
based on the event mechanism. Second, item flow among components can be realized in
many different ways. Picking a suitable solution is interesting and offers insights in the
way components can be connected.

Simulation Kernel

Resource
Component Other

Component

Resource
Component

Glue
Component

item
flow

item
flow

JavaBeans

Figure 5. Simulation component framework

4.1. Event handling in the simulation kernel

The simulation kernel needs to control simulation time and has to trigger events based
on event registrations of resource components. The simulation kernel is based on the
JavaBeans component model. The Beans specification does not define the semantics of in-
vocation order and synchronization of multiple event handlers listening to the same event.
A default implementation is given for synchronous event handling (class PropertyChange-
Support). However, this mechanism is not appropriate for simulation events.

In a simulation scenario it is typical that a resource component signals, for instance, the
availability of a new item. The first listener being notified about such an event reacts by
requesting the item and processing it. Other registered listeners get informed about the
event when actions of the first listener have already taken place. For example, a compo-
nent intended to trace item flow will get notified about the event too late because through
the actions of another component the information provided by the event is outdated.

It is quite typical that event handlers react upon notification and modify the state of the
event source, e.g., receiving and processing an item. In this situation problems arise, be-
cause conceptually parallel event handling is simply serialized such that each component
performs event handling actions before the next component is notified about the event.
The solution for this problem is the use of asynchronous event handling. Events must not
be processed immediately, but have to be collected in a global event queue. When a com-
ponent triggers an event, event objects for all registered listeners are queued, then event
handling takes place in a first-in-first-out order whereby new events may be appended to
the queue. As a consequence, events have to know their listeners, such that they can be
delivered when being taken out of the queue.

Synchronous events can only be used for components that do not have any influence on
the state of resource components. For example, whenever an item is received by a compo-
nent, this should be visualized by corresponding components immediately, even when the
item is put forward. Asynchronous events are important when several listeners are regis-
tered with the same provider. The first listener receiving the event would get the item be-
fore the second one has a chance of even getting the information that there is an item
available, i.e., the second listener would get the information when the item is not available
any longer. Summarizing, we use synchronous events for animation and visualization
components and asynchronous events for glue components.

4.2. Item flow

Item flow among components is of utmost importance for efficient simulation applica-
tions. Any component that is intended to be used within a simulation has to adhere to the
component framework in order to participate in the item flow, i.e., in order to be coupled
with other components and to provide and receive items. Subsequently, we will describe
different solutions and discuss their advantages and drawbacks.

4.2.1. Property changes: Property changes are simple and can be used for the
connection of any JavaBeans component. Thus, it is possible to integrate visualiza-
tion components with simulation components, even though visualization components
are not based on the simulation component framework. The concept of bound prop-
erties is based on events. Whenever the property of a component is modified, an
event is triggered in order to notify listeners. This mechanism can be used to inform
an item receiver that an item provider has an item available, see Fig. 6a.

provider

hasItem

receiver

needsItem

a)

provider receiver

needsItemhasItem

b)

Figure 6. Component coupling a) with bound properties b) with interfaces

In the example of Fig. 6a an event is sent to the receiver component whenever the boo-
lean property hasItem of the provider component is modified. This connection can simply
be established by the following Java code, which is usually generated by a building tool:

provider.addPropertyChangeListener("hasItem",receiver);

The receiver can check the value of the hasItem property of the provider and, if avail-
able, receive the item. However, it turns out that communication between components be-
comes clumsy and unnecessarily complex, because after the property change has occurred,
the provider and the receiver have to identify themselves and to negotiate about item flow.
This is necessary because several receivers can be registered at the same provider. They all
get notified when an item is available, but only one receiver may actually receive the item.

The concept of property changes is not powerful enough to realize sophisticated com-
ponent coupling, but for simple data exchange among components it is a possible solution.
The main disadvantage of this type of item flow is that the simple mechanism of bound
properties is burdened with complex communication and because it is not possible to con-
trol item flow. For example, it is not feasible to move items to receivers based on a spe-
cific strategy. Another disadvantage of using bound properties is the fact that there is no
static type check, i.e., it can only be detected at runtime whether components are listening
to the properties they are interested in.

4.2.2. Abstract interfaces: For intensive cooperation abstract interfaces are a useful
means to define operations. Such interfaces make cooperation more efficient, but all coop-
erating components have to implement the specific interfaces, see Fig. 6b. In the example
of Fig. 6b the provider knows the identity of the receiver and can use various operations
defined in the receiver’s interface in order to move an item forward. Such a connection can
again be established by a simple Java statement:

provider.setItemReceiver(receiver);

Using interfaces provides flexibility, but there is still a major drawback. First, compo-
nents have to know each other. Second, the provider (or the receiver) has to make deci-
sions on where items should be delivered. Thus, the provider not only has to know all the
receivers, it also has to have additional information in order to implement a distribution
strategy, e.g., to randomly or linearly distribute items. This means, that the same resource
component has to be available in different forms, implementing different distribution
strategies. Additionally, all resource components should provide all distribution strategies,
leading to a vast number of similar components.

4.2.3. Adapters: A more flexible form of cooperation can be reached by using adapters
that listen to bound properties and communicate via interfaces. Fig. 7a demonstrates the
use of an anonymous adapter. Such a connection can be established with an anonymous
Java class, i.e., it is necessary to manually write Java source code:

PropertyChangeListener adapter = new PropertyChangeListener {
void propertyChange (PropertyChangeEvent e) {

if (provider.hasItem() && receiver.needsItem()) receiver.receive(provider.provide())
}

};
provider.addPropertyChangeListener("hasItem",adapter);
receiver.addPropertyChangeListener("needsItem",adapter);

ad
ap

te
r

provider receiver

needsItemhasItem

a)

glue

provider receiver

needsItemhasItem

b)

Figure 7. Component coupling a) with anonymous adapter b) with glue component

Adapters provide additional flexibility over the previous solutions, but coupling is
rather cumbersome having to implement distribution strategies into anonymous classes.
From this point the next step seems obvious, i.e., using components rather than anony-
mous adapters.

4.2.4. Glue components: Glue components implement various distribution strategies
and can simply be placed among arbitrary provider and receiver components, see Fig. 7b.
The source code to establish the necessary connections is as follows:

provider.addPropertyChangeListener("hasItem", glue);
receiver.addPropertyChangeListener("needsItem", glue);
glue.addProvider(provider);
glue.addReceiver(receiver);

Like adapters, glue components register with their provider and receiver components in
order to get informed about item availability and item requests. Resource components
know nothing about coupling and only send events and property change notifications.
(Listeners have to be administered of course.)

4.2.5. Design rationale: Component systems in general and simulation systems in par-
ticular may grow to huge systems consisting of thousands of components. It becomes ex-
tremely hard if not impossible to understand and maintain such systems, especially when
there are arbitrary dependencies among the components. Restricting the dependencies to
be only in one direction leads to a layered architecture that is easier to comprehend and
maintain. We have paid attention to the fact that communication among components is
clearly defined and only one way as much as practical. For example, resource components
communicate with their environment only via broadcasting events. Glue components listen
to these events and call specific methods of the resources in order to realize item flow, i.e.,
they have specific knowledge about all the resource components involved in item flow.

It is sometimes impossible to completely restrict communication to one direction. In
such cases we use events as dedicated communication vehicles; the number of events has
been kept to a minimum with their semantics easy to comprehend and globaly known. In
other words, we use a layered architecture, i.e., components know nothing about compo-
nents of layers above them. Whenever it is necessary to communicate signals or data to
higher layers, we define appropriate events and listener types. Event sources broadcast
events and only know that there may be registered listeners.

The same communication mechanism is used for specialized visualization components
that listen to events of resources and may also access specific data of the resources for
better visualization. Naturally, resource components are unaware of any visualization
mechanisms. Hence, this model-view component architecture is practical not only for a
separation of models and views, but also for the realization of layered architectures.

5. Conclusion

We have described a component framework for discrete event simulation that is
based on the JavaBeans component model. We regard the framework as being typical for
component based software engineering in that it provides an infrastructure that is neces-
sary in a specific domain. Effective coupling of components will only be successful on top
of component models that enable simple composition of arbitrary components as well as
on top of specific component frameworks that enable more complex and more effective
composition of domain-specific components.

So far we have implemented a basic set of resource and glue components as well as
some domain specific items. New components can be implemented by extending existing
ones. We have also defined abstract classes that contain basic functionality needed for the
implementation of resource components like registering with the simulation kernel. We
are confident that discrete event simulation applications highly profit from component
technology in terms of reusability and flexibilty.

We have used the components developed so far for the simulation of simple scenarios
only. Due to the good experiences we have made, we have decided to make the system
more mature in order to additionally serve as a simulation framework for real world appli-
cations. We also plan to extend the framework to allow continuous and combined simula-
tion. The main objective is not only to extend the functionality of the framework and the
components, but to gain additional insight into problems and solutions of component
based software construction.

Many questions remain unanswered and need more work to be done in the future. For
example: Are the design principles of our framework typical for the domain or may they
be applied to other domains as well? Are there general mechanisms used in our framework
or in frameworks of other domains, that may be included into the component model for
better coupling of arbitrary components?

6. References
[1] H. Praehofer , A. Stritzinger, and J. Sametinger, “Using JavaBeans to teach Simulation and using Simula-

tion to teach JavaBeans”, ESM98, 12th European Simulation Multiconference, Manchester, UK, June 16-
19, 1998.

[2] H. Praehofer, J. Sametinger, A. Stritzinger: “Discrete Event Simulation using the JavBeans Component
Model”, WEBSIM99, 1999 International Conference On Web-Based Modelling & Simulation, San Fran-
cisco, California, January 17-20 1999.

[3] C. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison-Wesley, 1998.

[4] Sun Microsystems: JavaBeans, http://java.sun.com/beans/.

[5] B.P. Zeigler, Multifacetted Modelling and Discrete Event Simulation. Academic Press, 1984.

[6] B.P. Zeigler, Object Oriented Simulation with Modular, Hierarchical Models. Academic Press, 1990.

