
Component Interoperation

Johannes Sametinger

Johannes Kepler University

CD Laboratory for Software Engineering

Institut f�ur Wirtschaftsinformatik

A-4040 Linz, Austria

E-mail: sam@swe.uni-linz.ac.at

Tel: ++43-732-2468-9435

Fax: ++43-732-2468-9430

Abstract

A variety of component types can be reused. Yet di�erent composition techniques and
di�erent forms of interoperation of components make reuse di�cult or impossible in many situ-
ations. We briey introduce components and component composition. Then we describe forms
of interoperation. We propose a classi�cation by introducing an interoperation matrix where
we consider control and data aspects of interoperation and distinguish among sixteen di�erent
forms of interoperation.

Keywords: software components, software composition, software interoperation, component
taxonomy, software reuse

Workshop Goals: discussion/de�nition of component/composition/interoperation

Working Groups: component certi�cation tools, frameworks and processes; domain engineer-
ing tools

1



1 Background

The author's main research interests include software engineering, software maintenance, soft-
ware documentation, object-oriented programming, component-oriented programming, and soft-
ware reuse. Results in the area of reuse include a proposal for reuse documentation [Sam96a], a
method for documentation reuse [CS96a, Sam94], a measure for ad-hoc reuse [CS96b], a contribu-
tion on a component taxonomy [Sam96b], and empirical studies on reuse [CS96b, CS97].

2 Position

Software components are self-contained, clearly identi�able pieces that describe and/or perform
speci�c functions. This is a broad and general de�nition. We can have a variety of components like
functions, classes, applications, subsystems, design documents, distributed processes, Ada packages,
etc. We cannot necessarily reuse any of these components in a given reuse context. A classi�cation
system is important to assign components to speci�c categories and to limit component retrieval
to categories appropriate in a certain context.

2.1 Software Composition

Constructing software systems from software components is called software composition. Com-
posable software has a higher degree of exibility than monolithic software. Di�erent languages
and environments realize software composition to di�erent degrees and support di�erent notions of
components and compositions. Component-oriented software development requires that we have a
selection of reusable components that are plug-compatible. No general model of software composi-
tion exists yet [NM95].

2.2 Software Interoperation

If two components interoperate, we have a sending component (initiating the interoperation) and a
receiving component. The sending component activates the receiving component and passes control
to it. The receiving component reacts to the control input; it performs some action and, depending
on whether communication is synchronous or asynchronous, returns control to the sending compo-
nent. Some amount of information is usually passed along with interoperation. If more extensive
data exchange is needed, components may use another component for that purpose.

The receiving component may or may not be known to the sending component. This has a major
inuence on the exibility of compositions. Interconnection can be between two components (peer-
to-peer), to a �xed set of components (multicast), or to a dynamic set of components (broadcast).
Static interconnections are peer-to-peer. Dynamic interconnections can be either peer-to-peer,
multicast or broadcast. The data component also may or may not be known to both the sender
and receiver of interoperation. Fig. 1 gives an overview of the categories resulting from these
distinctions. We distinguish no, static, dynamic and broadcast for control and data, which leads to
sixteen categories. Some forms of interoperation in this table seem somewhat exotic, for example,
the combination no control and dynamic data. However, they do have practical applications.

2



no static dynamic broadcast

data data data data

n
o

co
n
tr
o
l

C C

D

C C C C

D D

C C

D D

st
a
ti
c

co
n
tr
o
l

S R S R

D

S R

D D

S R

D D

d
y
n
a
m
ic

co
n
tr
o
l

S
R

R
S

R

R

D

S
R

R

D D

S
R

R

D D

b
ro
a
d
ca
st

co
n
tr
o
l

S R

R

R

D

S R

R

R

D D

S R

R

R

S R

R

R

D D

Figure 1: Interoperation Matrix

For software reuse it is essential that components can be composed without having to know each
other. This allows component composition without modifying components (dynamic control). For
example, a function calls a sort function. In order to call a function shellsort instead, the program
text in the calling function has to be modi�ed. Object-oriented programming provides more exi-
bility through dynamic binding; a calling object does not know the receiver of a call. This makes
this object work with a variety of other objects without being modi�ed. Component composition is
easiest and most exible when interconnections among components are not point-to-point. Reusing
components is easy in environments where each component can react to events generated by any
other components and create new events without being aware of any recipients.

Standardized interoperation mechanisms of components on di�erent levels of complexity and gran-
ularity are important for software reuse. We must also increase interchangeability of components
beyond programming language boundaries and bene�t from the availability of di�erent program-
ming paradigms.

3



3 Comparison

Several de�nitions of components and reusable components have been provided in the literature.
We distinguish two approaches. Components can be seen as some part of a software system that
is identi�able and reusable; functions and classes are examples of such components. Components
can also be seen as the next level of abstraction after functions, modules and classes. The term
component-oriented programming (as a successor to object-oriented programming) is used in this
context.

Examples of de�nitions in the former category have been proposed by Booch [Boo87], by Holibaugh
et al [HP88], by Nierstrasz and Dami [ND95], in the NATO Standard for the Development of

Reusable Software Components [NAT94], by Wegner [Weg93], etc. The de�nitions are more or
less general. Szypersky provides an example of the latter category. He sees component-oriented
programming as a re�ned variation of object-oriented programming [Szy95]. Without explicitly
de�ning a component, Szypersky considers information hiding, polymorphism, late binding, and
safety as crucial aspects for component-oriented programming.

Categories of components have also been suggested by Booch, Holibaugh, Nierstrasz, etc. Addi-
tional taxonomies have been proposed by Margono and Berard (a modi�cation of Booch's taxon-
omy) [MB87], by Bradford Kain [BK96], by McGregor et al. [MDK96], and by Dusink and van
Katwijk [DvK87]. The presented component taxonomies were created in di�erent contexts and
with di�erent motivations. Many concentrate on source code and do not consider higher levels of
abstractions.

Component types strongly inuence how they are composed. Functional composition and object-
oriented composition are typical for functions and classes. Nierstrasz and Dami make a distinction
among functional composition, blackboard composition and composition by extension [ND95] and
among macro expansion, high order functional composition and binding of communication chan-

nels [NM95]. In the literature the terms composition and interoperation are mostly used inter-
changeably.

References

[BK96] J. Bradford Kain. Components: The Basics: Enabling an Application or System to be
the Sum of its Parts. Object Magazine, 6(2):64{69, April 1996.

[Boo87] Grady Booch. Software Components with Ada: Structures, Tools, and Subsystems. Ben-
jamin/Cummings Publishing Company, Inc., Menlo Park, CA, 1987.

[CS96a] Bart Childs and Johannes Sametinger. Literate programming and documentation reuse.
In Murali Sitaraman, editor, 4th International Conference on Software Reuse, pages
205{214. IEEE Computer Society Press, Orlando, Florida, April 23{26, 1996. 1996.

[CS96b] Bart Childs and Johannes Sametinger. Reuse measurement with line and word runs. In
TOOLS Paci�c '96, Melbourne, Australia, November 1996.

[CS97] Bart Childs and Johannes Sametinger. Analysis of literate programs from the viewpoint
of reuse. Software|Concepts and Tools, to be published, 1997.

[DvK87] E.M. Dusink and J. van Katwijk. Reections on Reusable Software and Software Com-
ponents. In Tafvelin [Taf87], pages 113{126. 1987.

4



[HP88] Robert Holibaugh and J. Perry. Phase I testbed description: Requirements and selec-
tion guidelines. Technical Report CMU/SEI-88-TR-13, Software Engineering Institute,
Carnegie Mellon University, September 1988.

[MB87] J. Margono and E.V. Berard. A Modi�ed Booch's Taxonomy for Ada Generic Data-
Structure Components and their Implementation. In Tafvelin [Taf87], pages 61{74. 1987.

[MDK96] John D. McGregor, Jim Doble, and Asha Keddy. A Pattern for Reuse: Let Architectural
Reuse Guide Component Reuse. Object Magazine, 6(2):38{47, April 1996.

[NAT94] NATO. NATO standard for the development of reusable software components, volume 1
(of 3 documents), 1994. Public Ada Library: http://wuarchive.wustl.edu/languages/ada/docs/nato ru/.

[ND95] Oscar Nierstrasz and Laurent Dami. Component-oriented software technology. In Nier-
strasz and Tsichritzis [NT95], pages 3{28. 1995.

[NM95] Oscar Nierstrasz and Theo Dirk Meijler. Research Directions in Software Composition.
ACM Computing Surveys, 27(2):262{264, June 1995.

[NT95] Oscar Nierstrasz and Dennis Tsichritzis, editors. Object-Oriented Software Composition.
Prentice Hall International (UK), December 1995.

[Sam94] Johannes Sametinger. Object-oriented documentation. ACM Journal of Systems Docu-

mentation, 18(1):3{14, January 1994.

[Sam96a] Johannes Sametinger. Reuse documentation and documentation reuse. In Richard
Mitchell, Jean-Marc Nerson, and Bertrand Meyer, editors, TOOLS 19: Technology of

Object-Oriented Languages and Systems, pages 17{28. Prentice Hall, Paris, France, 1996.

[Sam96b] Johannes Sametinger. On a taxonomy for software components. In WCOP-96. Workshop

on Component-Oriented Programming, Linz, Austria, July 8, dpunkt, 1996.

[Szy95] Clemens Szyperski. Component-oriented programming: A re�ned variation on object-
oriented programming. The Oberon Tribune, 1(2):1, 4{6, December 1995.

[Taf87] Sven Tafvelin, editor. Ada Components: Libraries and Tools, Ada-Europe International
Conference, Stockholm, Cambridge University Press, May 26{28, 1987.

[Weg93] Peter Wegner. Towards component-based software technology. Technical Report No. CS-
93-11, Brown University, 1993.

4 Biography

Johannes Sametinger is assistant professor at the Johannes Kepler University in Linz, Austria.
His research interests include software engineering, software documentation, software maintenance,
software reuse, object-oriented programming, and programming environments. He was a visiting
researcher at Texas A&M University and at Brown University for one year each in 1995 and 1996,
respectively. He received a Ph.D. in 1991 in computer science from the Johannes Kepler University.
Dr. Sametinger has also worked with Siemens in Germany on the development of compilers and
programming environments.

5


