
Reuse Measurement with Line and Word Runs

Bart Childs Johannes Sametinger

Department of Computer Science Department of Computer Science

Texas A&M University, USA Brown University, USA

bart@cs.tamu.edu js@cs.brown.edu

and CD Lab for Software Engineering

Johannes Kepler University, Austria

Abstract

Software reuse provides several advantages, e.g.,
increased productivity and software quality, de-
creased development time and costs. Installing
reuse programs requires up-front investments. Em-
pirical data showing that a potential for software
reuse exists in a certain environment will help man-
agers to decide on such investments. In order to
determine the potential productivity gain it is nec-
essary to know the amount of similarities in one's
systems.
Systematic black-box reuse increases productiv-

ity more than white-box reuse. However, white-box
reuse is the usual means of dealing with common
parts in di�erent systems. We will demonstrate
that word and line runs provide an e�ective means
for measuring ad-hoc reuse and determining reuse
potential. The suggested measurement can be used
to determine candidates for reusable components
and, thus, help in focusing reuse investments.
Line and word run measurement can be used to

�nd similarities in any text and can be used for
other purposes as well. We will demonstrate other
applications like spotting locations of possible re-
design in object-oriented programs.

Key Words:

software reuse, reuse potential, reuse measurement,

line and word runs, literate programs, TEX, C++

1 Introduction

Software reuse is the process of creating soft-
ware systems from existing software rather
than building them from scratch [Krueger92].
Reusable software has many bene�ts, the most
common ones of which are reduction of de-
velopment time and redundant work; ease of
documentation, maintenance, and modi�ca-
tion; improvement of performance and qual-
ity of software; expertise sharing and in-
tercommunication among designers; and con-
struction of complex software systems with
smaller teams. For more details on reuse see
[Braun94, Krueger92, Mili95].

Despite advantages of software reuse, in-
stalling corporate-wide reuse programs is not
an easy task and requires up-front investment.
Reuse is typically measured after it has been
done and is a gauge for the success or failure of
reuse programs. We want to show beforehand
that reuse potentials are present and where
they are. In order to determine the potential
productivity gain it is necessary to know the
amount of similarities in one's applications.
We will demonstrate a way of determining

the amount of white-box reuse and the poten-
tial for explicit reuse in source code and docu-
mentation. For this purpose we will use liter-
ate programs{TEX and METAFONT{and a C++
class library, i.e., ET++, as input.

TEX is a book quality formatting system
[Knuth86a, Knuth86b]. METAFONT is a sys-
tem that enables a programmer/artist to cre-
ate a family of fonts for TEX's use [Knuth86c,
Knuth86d]. Both systems were implemented
by Donald Knuth as literate programs. ET++
is an extensive application framework for C++
[Weinand89]. For the literate programs we
measure reuse in the WEB sources containing
source code and documentation. The WEB

source is input to the literate programming sys-
tem, which subsequently generates code and
high-quality documentation.

The structure of the paper is as follows: Sec-
tion 2 contains some general information about
the measurement of reuse. In Section 3 we dis-
cuss our �rst approach that is simply based on
lines and words. Then, `line runs' and `word
runs' are presented in Section 4. Results of line
and word run measures for TEX and ET++
are presented in Sections 5 and 6, respectively.
Some implementation aspects for the evalua-
tion of our measures follow in Section 7. Fi-
nally, we present our conclusions in Section 8.

2 Reuse Measurement

Software reuse is no exception to the rule
\we cannot manage what we cannot measure."
Reuse spans multiple projects and has an in
u-
ence even on organizational structures of com-
panies. To manage such enterprise-wide ac-
tivities requires monitoring. Software metrics
can be used to estimate costs, cost savings,
and the value of software practices [Poulin92].
The amount of software reuse (the reuse level)
in a certain software system can easily be de-
termined by the ratio of reused components
(or their number of lines of code) to the to-
tal number of components of the system (or
total amount of code), see Fig. 1. This mea-
sure does not consider more subtle aspects like
adaptation costs but it is objective.

R = (1� New
Total

)� 100

R reuse percentage

New number of new components

Total total number of components

Figure 1: Reuse Measurement based on Com-
ponents

Banker et al present a reuse percentage
which focuses on the total bene�t that is at-
tributable to reuse [Banker93]. The measure
represents the reuse of existing, unmodi�ed ob-
jects and is de�ned as the proportion of calls
of such objects.

Metrics based on generalization costs and
reuse savings are proposed by Henderson-Sel-
lers [Henderson-Sellers93]. It is important to
consider the whole spectrum of life-cycle costs,
like costs for testing, veri�cation, and main-
tenance. On the one hand, these costs will
hopefully be reduced by software reuse. On
the other hand, despite cost reductions dur-
ing development, the integration of a reused
code may have an impact on the overall sys-
tem design and a negative impact on software
maintenance [Mittermeir90].

Measuring reuse e�ectiveness includes mea-
suring costs, savings, and improvements in
quality. For example, a model for measure-
ment and metrics for object-oriented systems
is presented in [Vaishnavi96].

In this paper we will concentrate on a mea-
sure based on any text, i.e., arbitrary source
code and documentation text. We will provide
an objective measure for white-box reuse, but
will not consider aspects like savings or costs
of reuse.

Reuse measures presented in the literature
indicate reuse in a new software system, e.g.,40
percent of system A had been reused from

2

other systems.

We are more interested in how much a sys-
tem has been reused in other systems than one
speci�c reuse. The former indicates `reuse po-
tential' while the latter is a measure of a par-
ticular reuse.

We want to know howmuch of system A had
been reused in system B, or at a �ner granular-
ity, how much of component A had been reused
in component B. This is measuring white-box
reuse and is interesting for an indication of
whether it is worthwhile to make a component
more reusable and, thus enable its reuse as a
black box. This is the case when the results in-
dicate a high reuse in many other components.

3 Lines and Words

We started our �rst approach in reuse measure-
ment by comparing lines and words of �les. In
order to get a �rst hint for reuse we compare
each �le of a system with each �le of another
system. The number of lines that have to be
changed in file a to transform its contents to
the contents of file b as opposed to the total
number of lines (of file a) gives an indica-
tion of how much of file a had been reused
in file b. Fig. 2 shows how the line reuse per-
centage (of file a) can be determined. This
formula can be used in both directions, i.e., to
determine how much of file a is being reused
in file b or how much of file b is being
reused in file a, by using the total number
of lines of file a or file b, respectively.

As empty lines are considered to be equal,
the reuse percentage, naturally, is greater than
zero, if empty lines appear in both �les. Thus,
it is crucial that empty lines be eliminated be-
fore the reuse percentage is determined. Of
course, for two equal �les the reuse percentage
is 100. Without empty lines it should be zero
for nominally di�erent �les. But this is not
always true. We will discuss this later.

Rl(ab) = (1�
Cl(ab)

Tl(a)
)� 100

Rl(ab) line reuse percentage of a in b

0 means no reuse,
100 means everything (all lines)
of file a have been reused in
file b. (word reuse percentage
is determined accordingly.)

Cl(ab) number of lines to be changed in
file a in order to get contents of
file b

Tl(a) total number of lines of file a

Figure 2: Reuse Measurement based on Lines

Comparing lines does not give a reliable in-
dication of white-box reuse, as modi�cations
are often made on a word basis. Subtle di�er-
ences are often found by investigating white-
box reuse. Examples include: single words had
often been changed, line breaks were changed,
the order of chapters and/or sections was dif-
ferent, user supplemented index entries were
di�erent, and sentences were changed in syn-
tax (e.g., word ordering) without changes in
the semantics.

We can determine word reuse by replacing
blanks with newlines. A word in this context
is a sequence of characters separated by blanks
or newlines. But again, two di�erent �les can
have a reuse percentage that is greater than
zero, because it is not improbable that single
words appear in both �les, even though they
really have nothing in common. We will de-
note Rl and Rw as reuse percentages consider-
ing lines and words, respectively.

Comparing lines and words gives a good in-
dication about reuse. Usually, Rl and Rw do
not di�er much, with Rw slightly higher than
Rl. If both Rl and Rw are high, then obvi-
ously reuse had been done. If Rl is low, but

3

Rw is high, then reuse had been done, but the
reused text had been modi�ed on a more lo-
cal basis. This leads to many di�erent lines
and a lower value for Rl, but still leaves many
identical words resulting in a higher value for
Rw. Finally, if both Rl and Rw are low, then
apparently there is no reuse at all.
We will demonstrate Rl and Rw on some

small examples. For that purpose we take a
paragraph from the chapter \Introduction to
the syntactic routines" of TEX and METAFONT,
see Fig. 3. Identical lines are marked with an
`=' at the beginning. Despite its high similar-
ity there are only three identical lines in this
paragraph. Word (runs) that appear in both
systems are boxed .
The text of TEX in Fig. 3 contains 12 lines

and 128 words. The text of METAFONT con-
tains 13 lines and 135 words. 9 lines or 30
words have to be changed to transform the text
of TEX to the text of METAFONT. This results in
a line and word reuse of Rl = 25.0% and Rw =
76.6%. The high di�erence between Rl and Rw

indicates the modi�cation and polishing of the
text that had been done.
The paragraph in Fig. 4 has been taken

from the chapter \File Names" and demon-
strate reuse of source code also. In this partic-
ular case the documentation had been left un-
changed, but modi�cations to the source code
had been made. In this example line and word
reuse result in Rl = 69.2% and Rw = 79.7%,
indicating high reuse and less wordsmithing.
We include two additional samples from ar-

bitrary chapters of TEX and METAFONT, as well
as two arbitrary �les of the ET++ applica-
tion framework. We take TEX14 and MF42,
i.e., chapters number 14 and 42 of TEX and
METAFONT, respectively. Even though these
chapters are dissimilar, their resulting values
for Rl = 14.8% and Rw = 29.9% are quite
high. Similarly, the C++ �les Application.C

and Document.C have values of Rl = 23.3% and
Rw = 24.2%. The resulting reuse percentages

of the four samples are summarized in Table 1.

The unexpectedly high results for Rl and Rw

of samples 3 and 4 in Table 1 indicate high
reuse. This needs further explanation. As it
turns out some of the high reuse percentages
of TEX and METAFONT chapters are due to
their short lengths. For example, the chapter
\System-dependent changes" consists only of
10 lines in TEX. Reusing a single line results in
a reuse percentage of 10%. This is actually the
case for some METAFONT chapters which con-
tain an index entry for system dependencies.
Some longer chapters also achieve a rather high
reuse percentage. Take TEX's chapter \Copy-
ing boxes" as an example. It exhibits a reuse
of more than 10 percent in 25 (!) METAFONT

chapters. Looking for the reasons of this e�ect
we found out that source code lines containing
`end;' mostly contributed to this result.

C++ code has many lines containing only
curly braces (often at the beginning or end of
classes, functions, methods, and loops). It also
turns out that preprocessor statements, like
#include or #pragma, can distort the result.
ET++ �les compared with each other yield
an average reuse of about 20 percent. This is
caused soley by preprocessor statements and
lines that contain only braces. This distortion
can be eliminated by removing such lines be-
fore doing the measure. Nonetheless, deter-
mining the runs of identical lines is an appro-
priate and e�ective way to get information on
actual reuse.

4 Line and Word Runs

If 10 consecutive lines are identical in two chap-
ters/�les it is likely that they were reused. If
there is only one line it may have been reused,
but it also may having nothing to do with reuse
at all. This is the case with `end;' lines, even
though in some cases such lines may be re-
garded as being reused in a certain context.

4

TEX:

@* \[21] Introduction to the syntactic routines.

= Let's pause a moment now and try to look at the Big Picture.

The \TeX\ program consists of three main parts: syntactic routines,

= semantic routines, and output routines. The chief purpose of the

= syntactic routines is to deliver the user's input to the semantic routines,

one token at a time. The semantic routines act as an interpreter

responding to these tokens, which may be regarded as commands. And the

output routines are periodically called on to convert box-and-glue

lists into a compact set of instructions that will be sent

to a typesetter. We have discussed the basic data structures and utility

routines of \TeX\, so we are good and ready to plunge into the real activity by

considering the syntactic routines.

METAFONT:

@* \[30] Introduction to the syntactic routines.

= Let's pause a moment now and try to look at the Big Picture.

The \MF\ program consists of three main parts: syntactic routines,

= semantic routines, and output routines. The chief purpose of the

= syntactic routines is to deliver the user's input to the semantic routines,

while parsing expressions and locating operators and operands. The

semantic routines act as an interpreter responding to these operators,

which may be regarded as commands. And the output routines are

periodically called on to produce compact font descriptions that can be

used for typesetting or for making interim proof drawings. We have

discussed the basic data structures and many of the details of semantic

operations, so we are good and ready to plunge into the part of \MF\ that

actually controls the activities.

Figure 3: Sample 1

5

TEX:

= @ Here we have to remember to tell the |input ln| routine not to

= start with a |get|. If the file is empty, it is considered to

= contain a single blank line.

= @^ system dependencies@>

@^ empty line at end of file@>

= @<Read the first line...@>=

= begin line:=1;

= if input ln(cur file,false) then do nothing;

= firm up the line;

if end line char inactive then decr(limit)

else buffer[limit]:=end line char;

first:=limit+1; loc:=start;

= end

METAFONT:

= @ Here we have to remember to tell the |input ln| routine not to

= start with a |get|. If the file is empty, it is considered to

= contain a single blank line.

= @^ system dependencies@>

= @<Read the first line...@>=

= begin line:=1;

= if input ln(cur file,false) then do nothing;

= firm up the line;

buffer[limit]:="%"; first:=limit+1; loc:=start;

= end

Figure 4: Sample 2

6

The \Copying boxes" chapter mentioned above
has only runs with length 1. Of course the
chapters with a high reuse percentage also have
runs with length 1. However, there were many
which could be considered for real reuse, e.g.,
when a paragraph is reused with some lines
being modi�ed leaving identical lines without
an identical predecessor or successor. Consider
the example in Fig. 3 where the paragraph has
apparently been reused but it has only two
runs of identical lines with lengths 1 and 2.
Table 2 contains the run lengths for lines and

words for the four samples. The third sample
in Table 2 demonstrates a high reuse percent-
age resulting from single lines and words. (The
maximum length for line runs is 1, see Ml.) In
the C++ code of the fourth sample we have 80
line runs. However, the average length is only
1.1, and the maximum length is 3. It seems ap-
propriate to consider only lines and words that
are part of a run of certain length. When we
consider only runs with a minimum length of 2,
the picture looks quite di�erent. The numbers
for samples 1 and 2 drop only slightly (indi-
cating reuse), whereas the numbers for sam-
ples 3 and 4 drop drastically. The remaining
four line runs for the C++ sample originate
from #include and return statements. Please
note that including a �le is some sort of reuse,
too. With our reuse measurement we do not
take this into account, but rather make sim-
ple text comparisons without considering any
semantic information.
Thus, the determination of the reuse per-

centages by considering line runs and word
runs is justi�ed rather than just using lines and
words. Table 3 shows the resulting reuse per-
centages for line runs of lengths 1, 2, and 3 and
for word runs of lengths 1, 2, and 5.
The results show that in sample 1 there are

no long line runs (no one longer than 2), but
there are many word runs with at least a length
of 5. This indicates high reuse with modi�ca-
tions. Sample 2 shows a slight drop both in line

Rl;len(ab) = (1�
Cl(ab)

Tl(a)
)� 100

Rl;len(ab) line reuse percentage of a in b

considering runs with minimum
length len.
(word reuse percentage is deter-
mined accordingly.)

Cl(ab) number of lines to be changed in
file a in order to get contents of
file b

(equal lines in runs with length <
len are considered as being di�er-
ent)

Tl(a) total number of lines of file a

Figure 5: Reuse Measurement based on Line Runs

runs and in word runs, indicating high reuse
also. However, samples 3 and 4 show a rapid
drop of runs, indicating that the originally high
numbers cannot be contributed to reuse.
Figure 5 contains the run based measure-

ment for reuse. In order to evaluate reuse,
Rl and Rw have to be determined for various
lengths. (The lengths may vary depending on
the input data.) We will demonstrate this on
two more extensive examples in the next two
sections.

5 Example 1: TEX System

TEX's sources contain about 21,500 lines and
122,000 words. METAFONT's sources consist
of about 20,500 lines and more than 110,000
words. TEX and METAFONT are subdivided
into 55 and 52 chapters, respectively.
First, we compare each chapter of TEX with

each chapter of METAFONT and determine the
values for Rl and Rw for various lengths (mea-
suring how much of TEX had been reused in
METAFONT.

7

Sample Rl Rw Tl Tw
1. Fig. 3 25.0 76.6 12 128
2. Fig. 4 69.2 79.7 13 59
3. TEX14!MF42 14.8 29.9 81 428
4. Appl.C!Doc.C 23.3 24.2 365 901

Rl: line reuse percentage
Rw: word reuse percentage
Tl: total number of lines
Tw: total number of words

Table 1: Line and Word Reuse in Samples

Sample len nl avgl Ml �l nw avgw Mw �w

1. Fig. 3 1 2 1.5 2 3 12 8.2 30 98
2 1 2.0 2 2 6 15.3 30 92

2. Fig. 4 1 3 3.0 4 9 3 15.7 33 47
2 2 4.0 4 8 3 15.7 33 47

3. TEX14!MF42 1 12 1.0 1 12 123 1.0 2 128
2 0 0.0 0 0 5 2.0 2 10

4. Appl.C!Doc.C 1 80 1.1 3 85 165 1.3 5 218
2 4 2.2 3 9 35 2.5 5 88

len: minimum length for runs to be considered
nl, nw: number of line/word runs
avgl, avgw : average length of line/word runs
Ml, Mw : maximum length of line/word runs
�l, �w: sum of lengths of line/word runs

Table 2: Line and Word Runs in Samples

Sample Rl;1 Rl;2 Rl;3 Rw;1 Rw;2 Rw;5

1. Fig. 3 25.0 16.7 0.0 76.6 71.9 71.9
2. Fig. 4 69.2 61.5 61.5 79.7 79.7 74.6
3. TEX14!MF42 14.8 0.0 0.0 29.9 2.3 0.0
4. Appl.C!Doc.C 23.3 2.5 0.8 24.2 9.8 1.7

Rl;i: reuse percentage for line runs with minimum length i

Rw;i: reuse percentage for word runs with minimum length i

Table 3: Run based Reuse in Samples

8

The results are shown in Table 4, sorted
in descending order by Rl;1. Not surpris-
ingly pairs of chapters with identical or sim-
ilar titles show up at the top. Some chap-
ters with identical titles have a rather low
reuse percentage, e.g., \Saving and restoring
equivalents" (TEX19!MF16), \Expanding the
next token" (TEX15!MF12), or \The command
codes" (TEX25!MF35). The results clearly
show reuse in the top chapters with similar
or equal titles. They also show that despite
the high values for Rl;1 there is no reuse below
the entries of TEX14, because reuse percent-
ages drop to zero quickly with increased run
lengths.

Having a closer look at the investigated lit-
erate programs we found, that software reuse
had been (successfully) applied to both source
code and documentation. This was done pri-
marily by text scavenging.

We had expected a certain degree of reuse
in the results. However, our expectations have
been exceeded and we were surprised about the
high di�erences between line and word reuse.
More details about reuse in the TEX systems
are given in [Childs96].

6 Example 2: ET++

We also tested our reuse measuring method by
applying it to the �les of ET++, an application
framework implemented in C++ [Weinand89].

We have mentioned earlier that C++ code
contains many curly braces and preprocessor
statements. In order to get rid of such similar-
ities in the result of the comparison we evalu-
ated the reuse percentages by considering only
line runs with minimum lengths 5 and 10, and
word runs with minimum lengths 10 and 20.

Version 3.2.2a0 of ET++ has 169 .h and
146 .C �les. We compared all .h and .C �le
with each other, which results in 1692 + 1462,
i.e., almost 50; 000 �le comparisons. Out of

these 50,000 comparisons, 260 resulted in at
least one value greater than zero for Rl;5 or
Rw;10. However, only a few have considerable
values for Rl;10 and/or Rw;20. These are shown
in Table 5. Most entries show up twice in
reverse order, because comparisons had been
done in both directions. Even without know-
ing the particular class library, the numbers
reveal some interesting facts.
Some �les, e.g., Date.C, Time.C, and Date-

Time.C share a high percentage of code. Date-

Time.C is apparently a combination of Date.C
and Time.C. The corresponding .h �les do not
show up with high similarities. Inspecting
the code reveals that{surprisingly{both �les
Date.h and Time.h simply include DateTime.h.
The �les Math.C and MathUtils.C contain the

same implementation of class Math. File Math.h
is empty and includes �le MathUtils.h which
contains the de�nition of class Math.
The classes CollView and CollView1 contain

slightly di�erent de�nitions and implementa-
tions of a collection view. Class CollView is
based on a class View, whereas class CollView1
is based on class GridView.
Similar observations can be made for the

other �les showing high similarities. We draw
the following conclusions from these results:

� Redesign

High similarities may indicate potential
locations for redesign.

� Un�nished work

High similarities may indicate locations of
un�nished code.

Naturally, it is not possible to automatically
determine locations that need redesign. This
is a subjective matter. However, high similar-
ities suggest to have a look at the code and
to determine the reason for these similarities.
They may have good reasons. But they may
also suggest a redesign cycle or, for example,
indicate temporary �les.

9

Chapters Rl;1 Rl;2 Rl;3 Rw;1 Rw;2 Rw;5

TEX6 !MF6 82.7 80.2 77.4 93.3 92.9 91.5
TEX2 !MF2 81.6 79.6 77.7 76.9 76.1 75.8
TEX3 !MF3 81.1 78.7 76.1 93.4 93.2 92.5
TEX54!MF51 80.0 80.0 60.0 97.6 96.4 96.4
TEX9 !MF10 72.1 67.9 65.7 85.1 84.6 82.9
TEX52!MF50 71.9 68.8 62.5 89.2 87.8 86.6
TEX4 !MF4 71.5 65.9 62.6 90.2 88.9 87.0
. .
TEX18!MF13 19.4 14.2 9.7 53.2 47.7 44.7
TEX28!MF36 17.1 13.9 9.9 38.1 35.5 28.7
TEX20!MF14 16.8 9.9 7.5 34.7 24.1 18.3
TEX14!MF42 14.8 0.0 0.0 29.9 1.9 0.0
TEX14!MF35 14.8 0.0 0.0 25.7 3.5 0.0
TEX14!MF43 14.8 0.0 0.0 23.4 0.9 0.0
. .
TEX25!MF35 7.3 0.8 0.0 18.3 9.4 5.0
TEX19!MF16 3.1 0.0 0.0 8.5 3.1 0.5
TEX15!MF12 0.0 0.0 0.0 19.9 5.6 5.6
. .

Table 4: Line and Word Runs of TEX in METAFONT

Files Rl;5 Rl;10 Tl Rw;10 Rw;20 Tw
PopupTearO�.h!Menu.h 58.3 30.0 60 69.1 57.6 191
CollView1.h!CollView.h 34.8 29.2 89 47.6 35.3 275
CollView.h!CollView1.h 31.3 26.3 99 42.8 31.7 306
Menu.h!PopupTearO�.h 25.7 13.2 136 26.8 22.3 493
ObjFloat.h!ObjInt.h 21.4 0.0 42 19.6 19.6 107
ObjInt.h!ObjFloat.h 19.1 0.0 47 16.3 16.3 129
CheapText.h!GapText.h 7.2 0.0 69 11.3 11.3 291
MathUtils.C, Math.C 96.6 89.1 119 96.1 96.1 333
Date.C!DateTime.C 95.7 95.7 47 97.1 97.1 140
Math.C!MathUtils.C 95.0 87.6 121 96.1 96.1 333
Time.C!DateTime.C 82.6 82.6 23 82.4 82.4 51
DateTime.C!Date.C 68.2 68.2 66 74.3 74.3 183
CollView1.C!CollView.C 44.3 25.9 375 52.1 37.0 924
PopupTearO�.C!Menu.C 37.0 19.3 254 55.6 23.8 626
CollView.C!CollView1.C 34.6 20.2 480 38.6 27.4 247
DateTime.C!Time.C 28.8 28.8 66 23.0 23.0 183

Table 5: Line and Word Runs in ET++

10

Of course, reuse had been done in ET++ by
means of inheritance. Inheritance is natural in
object-oriented systems and provides a means
of systematic reuse. We do not measure this
kind of reuse. Instead we measure reuse that
had been done by means of text scavenging,
i.e., ad-hoc reuse. Thus, we discover locations
where reuse should be done in a more system-
atic manner. For example, the results of our
measures could be used to locate similarities of
classes. Extracting these similarities and de-
signing abstract base classes is a way to trans-
form discovered ad-hoc reuse into systematic
reuse.

7 Implementation

We will demonstrate on the small examples of
Fig. 3 and Fig. 4 how we determine the reuse
percentages based on line runs. Word runs are
evaluated similarly, but �rst blanks are being
replaced with newlines.

As �rst step we eliminate blank lines and use
the Unix di� tool to compare the two sources.
di� outputs edit commands (add, change, and
delete) that can be applied to change the con-
tents of one �le to another. Fig. 6 shows the
output of di� when comparing the two para-
graphs of Fig. 3. The output means that the
�rst line should be changed to the contents
shown in the next line. The period ends the
data for the change command.

We simply skip the data and grab only the
pure edit commands (by using the Unix grep

tool). The result for Fig. 3 is c1, c3, and c6 12.
This means that line 1, line 3 and lines 6 to 12
have to be changed in order to change the para-
graph from the TEX to the METAFONT version.

Thus, we know that 9 lines out of 12 have to
be changed and that there are two line runs,
i.e., line 2 and lines 4 to 5. We do these cal-
culations with a C++ program that reads the
edit commands line by line, adds up the line

c1

@* \[21] Introduction to the ...

.

c3

The \MF\ program consists of ...

.

c6 12

while parsing expressions and ...

semantic routines act as an ...

which may be regarded as commands. ...

periodically called on to produce ...

used for typesetting or for making ...

discussed the basic data structures ...

operations, so we are good and ...

actually controls the activities.

.

Figure 6: Sample Output of di�

runs, and determines the reuse percentages.

The example shown in Fig. 4 results in the
edit commands d5 and c10 12, indicating three
runs. The runs are from line 1 to 4 (length 4),
from line 6 to 9 (length 4), and at line 13
(length 1). In order to determine a run at
the end of the text we have to know the text's
length. We use a little trick for that purpose
by appending two di�erent lines to both texts.
This guarantees that we get edit commands for
the last line as well, giving us the information
about the length of the text. With this extra
line we get the commands c1, c3, and c6 13

for Fig. 3 and d5, c10 12, and c14 for Fig. 4.
Thus, the lengths of the texts are 12 and 13.

8 Conclusions

We have presented a reuse measure that is
based on runs of lines and words. The measure
is e�ective in determining the amount of white-
box reuse in any kind of software systems. It
is language-independent and can be applied to
source code and documentation. Additionally,
it can be fully automated.

11

Reuse measurement based on line and word
runs can be used for many di�erent purposes.
White-box reuse evaluation presented in this
paper is just one example. Other applications
are �nding legal or illegal reuse in technical
and scienti�c papers, determining (the amount
of) modi�cations from one version of software
to another, �nding potential locations for re-
design, or �nding the amount of \reuse" in pro-
grams written by students for classes.
Using the proposed measure we have investi-

gated some TEX systems and C++ code. C++
code generally contains many similar lines. Us-
ing runs of appropriate length can eliminate
such inherent similarities. However, care must
be taken not to increase the length too much
and possibly overlook some reuse that can be
seen only with smaller run lengths.
TEX and its related systems have been im-

plemented in a literate manner. Thus, reuse
in their context not only means reuse of source
code but also of documentation.
The investigated TEX systems have been im-

plemented from scratch by scavenging existing
documentation and code. The amount of ad-
hoc reuse turned out to be surprisingly high.
The di�erent results achieved by comparing
lines and words indicate, that reused text had
been carefully adapted. Thus, successful ad-
hoc reuse had been done, but no attention had
been directed to providing and reusing black-
box components. With the results of our mea-
surement we are in a position of knowing the
amount of reuse and its exact locations. This
enables us to make statements about where
reuse investments are most e�ective.
We expect to make similar statements for

source code as well. The application frame-
work we have used for our experiments is well
designed and does not indicate further reuse
potential in itself. We would have to make
comparisons with various application systems
to possibly �nd areas that might be extracted
and included in the framework.

References

[Banker93] Rajiv D. Banker, Robert J. Kau�-
man, D. Zweig: \Repository Evaluation
of Software Reuse," IEEE Transactions

on Software Engineering, Vol. 19, No. 4,
pp. 379{389, April 1993.

[Braun94] Christine Braun: \Reuse," in John
J. Marciniak (Ed.): Encyclopedia of Soft-

ware Engineering, Vol. 1, John Wiley &
Sons, pp. 1055{1069, 1994.

[Childs96] Bart Childs, Johannes Sametinger:
\Analysis of Literate Programs from the
Viewpoint of Reuse," Software { Concepts

and Tools, to be published, 1997.

[Henderson-Sellers93] Brian Henderson-Sell-
ers: \The Economics of Reusing Library
Classes," JOOP, Vol. 6, No. 4, pp. 43{50,
July-August 1993.

[Knuth86a] Donald E. Knuth: \The TEX
Book," Volume A of Computer & Type-
setting, Addison-Wesley, 1986.

[Knuth86b] Donald E. Knuth: \TEX: The
Program," Volume B of Computer & Type-
setting, Addison-Wesley, 1986.

[Knuth86c] Donald E. Knuth: \The META-
FONT Book," Volume C of Computer &
Typesetting, Addison-Wesley, 1986.

[Knuth86d] Donald E. Knuth: \METAFONT:
The Program," Volume D of Computer &
Typesetting, Addison-Wesley, 1986.

[Krueger92] Charles W. Krueger: \Software
Reuse," Computing Surveys, Vol. 24, pp.
131-183, June 1992.

[Mili95] Hafedh Mili, Fatma Mili, Ali Mili:
\Reusing Software: Issues and Research
Directions," IEEE Transactions on Soft-

ware Engineering, Vol. 21, No. 6, pp. 528{
562, June 1995.

12

[Mittermeir90] Roland T. Mittermeir, Wil-
helm Rossak: \Reusability," in Peter A.
Ng, Raymond T. Yeh (Eds.): Modern Soft-

ware Engineering: Foundations and Cur-

rent Perspectives, Van Nostrand Reinhold,
Chapter 7, pp. 205{235, 1990.

[Poulin92] Je�rey S. Poulin: \Measuring Re-
use," 5th Annual Workshop on Software

Reuse, WISR5, 1992.

[Vaishnavi96] Vijay Vaishnavi, Rajendra Ban-
di: \Measuring Reuse," Object Magazine,
Vol. 6, No. 2, pp. 53{57, April 1996.

[Weinand89] Andre Weinand, Erich Gamma,
R. Marty: \Design and Implementation of
ET++, a Seamless Object-Oriented Appli-
cation Framework," Structured Program-

ming, Vol. 10, No. 2, 1989.

13

