

 Reuse Documentation and Documentation Reuse

 Johannes Sametinger
Department of Computer Science,

Texas A&M University, TX, U.S.A.
jsam@cs.tamu.edu

and
CD Laboratory for Software Engineering,

Johannes Kepler University of Linz, Austria
sametinger@swe.uni-linz.ac.at

 Abstract

 This work has been supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung.

 The reuse of application frameworks and class
libraries can improve the productivity in software
development considerably. Object-oriented tech-
niques, i.e., inheritance and information hiding,
that ease reusing software, can be applied to
documentation and thus, enable documentation
reuse.

 One can document a software component from
scratch—regardless of what a component is. This
leads to multiple documentation of features that
are multiply reused and may easily result in in-
consistencies. One can also describe a compo-
nent's differences to other components. This seems

logical for systems documentation of object-
oriented software. However, this kind of reuse can
also be applied to documentation, where there is
no source code involved at all.

 The information needed for the reuse of soft-
ware components is not provided by traditional
documentation, which is often divided into proj-
ect documentation, user documentation, and sys-
tems documentation. In this paper we define the
contents and structure of reuse documentation
and apply the concepts of documentation reuse.
This results in a reuse documentation hierarchy
that defines the structure of various kinds of reus-
able components and supports consistency and
completeness of the information.

 Keywords: documentation, reuse,
object-oriented programming, reuse
documentation, documentation reuse,
literate programming

1. Introduction

 The first step in the reuse process is finding and
selecting suitable components. For effective reuse
it must be easier to find components than to de-
velop them from scratch. Finding suitable com-
ponents does not mean finding exactly what is
needed. Locating similar components can be suf-
ficient. After components have been found, they
must be understood in order to reuse them.
Finding and understanding are related, because to
select a component for reuse one must know what
the component does. Understanding becomes
even more important when the component has to
be modified. Adequate documentation is signifi-
cant for this step.

 Building a software system out of a bunch of
unmodified components is the ideal scenario.
Typically, at least some of them will have to be
adapted to specific needs of the particular soft-
ware system to be built. Components can be
modified in various ways, e.g., by changing inter-
nals or by adding new features. When a compo-
nent offers the required functionality it has to be
incorporated into the software system.

 The goal is to maximize reuse and to minimize

basic development efforts. But typically, existing
components will not suffice to build a new sys-
tem. At least a few components will have to be
built from scratch. Ideally, these components will
be inserted into the component library to facili-
tate their reuse in later projects.

 Fig. 1-1 summarizes the steps encountered in
the reuse process. On the upper left side is the
process of reusing an existing component (steps
Selection, Comprehension, and Adaptation). De-
velopment is necessary when no reusable compo-
nents can be identified. Integration has to be
done regardless of whether an old component is
reused or a new one has been developed. Finally,
a new component or a modified old one is gener-
alized—if necessary, classified, and inserted into a
component repository for future reuse. In this
paper we will concentrate on the information
needed for effective reuse. We refrain from classi-
fication techniques and repository aspects, but
rather deal with the systematic organization of
documentation and the methodical reuse not only
of software components but also of their docu-
mentation.

2. Component Comprehension

 Information about various aspects has to be pro-
vided in order to effectively and correctly reuse a
software component. This includes information
that enables the evaluation of components in a set
of possible candidates, the understanding of a
component's functionality, the use of a compo-
nent in a certain environment, and the adaptation
of a component for specific needs. Good docu-
mentation of components is essential to software
reusability. Traditional documentation usually
does not meet these needs. In the literature a lot
of advice has been given about what should be
provided for reusable software components. The
following entries have been distilled from [Braun
94, Karlsson 95, Krueger 92, Meyer 94, NATO]:

• Component Name: name, possibly giving a
hint about a component's functionality

• Identification: Is the component a candidate
for potential reuse in a certain scenario? (i.e., a

Retrieval

Comprehension

Integration

Adaptation Development

Generalization

Classification

 Fig. 1-1: Various Steps of Software Reuse

clear, concise initial statement about the com-
ponent's functionality for initial selection)?

• Specification: What is the component's func-
tionality in full detail?

• Status: What is the quality, test, maintenance,
financial, etc. status of the component?

• Technical Restrictions: What are the technical
restrictions on the use of the component (e.g.,
capacities, programming language, operating
system dependencies)?

• Commercial or Legal Restrictions: What are the
commercial or legal restrictions on the use of
the component (e.g., purchase, special license,
or permission required)?

• Problems: Are there any outstanding problem
reports (e.g., known bugs, desired enhance-
ments)?

• Recommended Enhancements: Are there any
known possible enhancements (e.g., to im-
prove performance/maintainability, make the
component more robust, extend the scope of
reuse)?

• Resource requirements: What (amount of)
system resources is required for using the
component (e.g., memory, processor, commu-
nication channels)?

• Installation: How is the component adapted to
a new application?

• Adaptation: How and to what specific needs
can the component be adapted?

• Usage: How can the component and/or its
functions be used (correctly)?

• Support: What is the point of contact to get
help (e.g., in adapting the component)?

• Relations to other components: Can this com-
ponent be used stand-alone or must other
components be used with this one together?

• Alternatives: Are there similar components,
that could be used instead of this one?

• History: What is the history and current version
of the component (including all prior versions,
their developers, and dates of release)?

• Test support: Are a test environment and/or test
cases available for the component?

• Classification: How is the component classified
to enable future retrieval (depending on the
used classification scheme)?

• Implementation: How is the component im-
plemented?

 The amount and kind of information needed
strongly depends on the form of the reusable
component. Reusing assembler routines requires
different information than reusing an object-
oriented class or a self-contained application. It is
important that the documentation is considered
an essential part of the software component.
Without proper documentation a component is
useless. Neither can it be retrieved when needed,
nor can it be reused and adapted with reasonable
effort. Documentation standards have to be es-
tablished in order to guarantee the availability of
important information and the completeness and
consistency of this information. A consistent
structure makes the documentation more readable
and better understandable. It helps the reuser in
finding relevant parts and decreases the time
needed for evaluation, actual reuse, and adapta-
tion of components.

 Another important aspect is that each compo-
nent has its self-contained documentation. Letting
the reuser filter out a component's documentation
from a big document describing a set of compo-
nents is bad practice. A component's require-
ments, design, test, reuse information must stand
alone and should be minimal in dependencies
and references to other documents. Additional
requirements to the documentation are its avail-
ability in machine-readable form. This allows us
to reuse it for derivative components and modify
it according to the modifications made to the
component. Clarity and understandability should
be a matter of course for any documentation. It is
of special importance in fostering reuse.

 In Section 3 we will describe the concepts for
documentation reuse that help in defining docu-
mentation structures, and keeping documentation

complete and consistent. In Section 0 we will ap-
ply these concepts to information needed for re-
use. Finally, in Section 5 we will deal with oft en-
countered inconsistencies between source code
and documentation.

3. Documentation Reuse

 Successful reuse of documentation can be
achieved by means of

• definition of a common structure for certain
documentation parts,

• extraction of common information for several
documentation parts,

• reuse and extension/modification of existing
documentation (possibly without need of
modification),

• definition of various views for different kinds
of readers, e.g., casual users and professional
users, and,

• object-oriented description of object-oriented
software systems.

 The key concepts in accomplishing all this are
documentation inheritance, documentation ab-
straction, and documentation views, which are de-
scribed in the subsequent sections. Additionally, a
combination with literate programming and hy-
pertext can further improve easy access and con-
sistency of the documentation. This has provided
the motivation for realizing the concepts with an
existing literate programming tool that supports
hypertext (see Chapter 5). We start this chapter
with a recapitulation of the originating concept,
source code inheritance.

3.1 Source Code Inheritance

 The source code of an object-oriented software
system consists of classes containing variables
(structure) and methods (behavior). Objects with
the same structure and behavior are described in
one class. From a documentor’s point of view,
classes and methods seem to be equivalent to
modules and procedures used in conventional

programming. One of the main differences be-
tween modules and classes is the inheritance rela-
tionship between classes. A class may inherit the
structure and behavior of another class and addi-
tionally extend and modify it. For example,
classes Rectangle and Circle inherit from a class
Shape, which defines the structure and the be-
havior that is applicable to all graphical objects.
Rectangle and Circle are called subclasses (or de-
rived classes), whereas Shape is called the base-
class. The source code of the classes Rectangle
and Circle contains only the modifications and
extensions to the baseclass Shape (see Fig. 3-1).

 The hatched boxes in Fig. 3-1 indicate the ex-
istence of source code for a method. Rectangle
objects can be drawn, outlined, moved, and ro-
tated, though the class Rectangle does not imple-
ment the methods Outline and Move; they are in-
herited from the baseclass Shape. The methods
Draw and Rotate are overridden; i.e., rectangle
objects have their own Draw and Rotate methods,
they do not use the methods of the Shape class.

3.2 Documentation Inheritance

 As with object-oriented source code, a documen-
tation unit should inherit the documentation of its
base unit. A section is a portion of documentation
text with a title. The sections can be defined by
the programmer/technical writer and used for in-
heritance in the same way as methods. Similar to
methods, sections are either left unchanged, re-
moved, replaced, or extended.

Rectangle

Shape

methods of
class Rectangle

classes:

D
ra

w

O
ut

lin
e

M
ov

e

R
ot

at
e

Fig. 3-1: Methods of classes Shape and Rectangle

 Fig. 3-2 contains the structure of the docu-
mentation of the Unix tools dbx and dbxtool. The
documentation of dbx consists of eleven sections;
dbxtool has six documentation sections. dbxtool
inherits the sections Availability, Usage, Files and
Notes. It has its own sections on Name, Synopsis,
Description, Options, and See also. The section
Environment is not applicable to dbxtool and thus
is hidden. The bugs of dbx are also available in
dbxtool, therefore the Bugs section had been ex-
tended. For more details on this kind of docu-
mentation inheritance see [Sametinger 94].

3.3 Documentation Abstraction

 In object-oriented programming, abstract classes
are designed as parents from which subclasses
may be derived. Abstract classes are not them-
selves suitable for instantiation.
They are used to predefine certain
structures and behaviors which are
then shared by groups of sibling
subclasses. The subclasses add dif-
ferent variations of the missing
pieces. Documentation has similar
structure in many domains, e.g.,
manual pages and software life-
cycle documents. The predefined
structure for a certain group of
documents guarantees uniform
and consistent appearance. It is
also possible to factor common

information for all the documents,
making it easier to make modifica-
tions and keep information con-
sistent. The definition of sections
of the abstract documentation
serves as a guide to consistent
documentation and helps identify
incomplete parts.

 Fig. 3-3 is another view of the
documentation of dbxtool in terms
of documentation abstraction. The
documentation for "abstract man-
ual page" defines twelve sections,
of which six are designated as

having to be overridden (the sections Name, Syn-
opsis, Description, Usage, Files, and Bugs). If
such a section is not overridden, as indicated in
Fig. 3-3 for section Usage, then the inherited
contents of the section should indicate that this
information is missing and has to be provided.
Tool support is useful in checking the complete-
ness of documentation and—if incomplete—in
spotting the missing sections. The abstract docu-
mentation in Fig. 3-3 contains an additional sec-
tion Copyright, which is automatically included
for all descriptions inherited thereof.

 Fig. 3-4 shows what the abstract documenta-
tion for manual pages could look like. Whenever
manual pages for a new tool are written, the pres-
ence of "---information has to be provided---"
(which is inherited from the abstract manual

dbxtool

dbx

documentation of dbxtool

Sy
no

ps
is

N
am

e

A
va

ila
bi

lit
y

D
es

cr
ip

tio
n

O
pt

io
ns

U
sa

ge

E
nv

ir
on

m
en

t

Fi
le

s

Se
e

al
so

N
ot

es

B
ug

s

 Fig. 3-2: Inherited, overridden, extended, and hidden documentation
sections of dbxtool

dbxtool

dbx

documentation of dbxtool

abstract
man page

Sy
no

ps
is

N
am

e

A
va

ila
bi

lit
y

D
es

cr
ip

tio
n

O
pt

io
ns

U
sa

ge

E
nv

ir
on

m
en

t

Fi
le

s

Se
e

al
so

N
ot

es

B
ug

s

C
op

yr
ig

ht

 Fig. 3-3: Sections of dbxtool using documentation abstraction

page) in the documentation indicates that there
are still missing parts, i.e., sections to be written.

3.4 Two Levels of Documentation Inheritance

 A single level of inheritance may not be sufficient
for the definition of a convenient documentation
structure. Suppose the Usage section of dbx is
further divided into subsections (such as File-
names, Expressions, Operators, etc.) and that for
the documentation of dbxtool we want to override
only certain parts and inherit the rest. Of course,

we could define sections like Usage-Filenames,
Usage-Expressions, and Usage-Operators. How-
ever, the logical structure of the document is bet-
ter reflected by applying the inheritance mecha-
nism to subsections also. This is shown in Fig. 3-
5, where an additional (abstract) documentation
unit has been introduced in order to predefine
these subsections.

 Two levels of inheritance are important for the
documentation of object-oriented software sys-
tems also. In this case we need a second level of
inheritance for the description of methods. Meth-
ods are inherited from baseclasses; but docu-
mentation for a single method must be further di-
vidable in order to allow convenient adaptation.

 In Fig. 3-6 we have the documentation of a
class Shape, which consists of three sections
(Description, Layout, Event Dispatching) plus the
documentation of the methods Draw, Outline,
Move and Rotate. The documentation of each
method consists of the sections Description, In-
terface and Categories. The documentation of
class Rectangle overrides the Description and
adds an Implementation subsection for the meth-
ods Draw and Rotate. Considering more than two
levels of inheritance is possible. However, we

 abstract manual page
 Name

---information has to be provided---
 Synopsis

---information has to be provided---
 Availability

Refer to "Installing OS 4.1" on how to install optional
software.

 …
 See also

OS 4.1 Programmer's Guide
 Notes

no notes
 Bugs

---information has to be provided---
 Copyright

© by Company XYZ, 1996

 Fig. 3-4: Possible documentation abstraction
for manual pages

Fi
le

na
m

es
E

xp
re

ss
io

ns
O

pe
ra

to
rs

Sc
op

e
R

ul
es

E
xe

cu
tio

n
T

ra
ci

ng
Pr

in
tin

g
D

is
pl

ay
in

g
Fi

le
 A

cc
es

s
M

is
ce

lla
ne

ou
s

M
ac

hi
ne

-L
ev

el
M

ac
hi

ne
 R

eg
is

te
rs

dbxtool

dbx

documentation of dbxtool

Sy
no

ps
is

N
am

e

A
va

ila
bi

lit
y

D
es

cr
ip

tio
n

O
pt

io
ns

U
sa

ge

E
nv

ir
on

m
en

t

Fi
le

s

Se
e

al
so

N
ot

es

B
ug

s

abstract
man page

C
op

yr
ig

ht

debuggers

 Fig. 3-5: Sections of dbxtool using two abstractions and two levels of inheritance

contemplate two levels only, because so far we
have not encountered a practical example where
two levels were not sufficient.

3.5 Documentation Inclusions and References

 For documentation to be readable, information
about a unit should not be spread over several
files and/or directories. We need either the full
documentation of a unit with all inherited docu-
mentation included, or cross-references to the in-
herited information (with page numbers for
printed documentation or links for online docu-
mentation). Fig. 3-7 shows part of the documen-
tation of a class Collection. The section Dynamic
Creation and Object Copying is inherited from
class Object and can be read on page 34 of the

documentation. In printed documentation refer-
ences to page numbers is preferred in order to
avoid waste of paper. For online documentation
the inclusion of inherited sections may enhance
readability and avoid the excessive use of links.
Then too, it may make the document overly re-
dundant.

 It is also useful to have a table of contents for

Im
pl

em
en

ta
tio

n

Rectangle

Shape

m
et

ho
d

D
ra

w

documentation of class Rectangle

classes:

m
et

ho
d

O
ut

lin
e

m
et

ho
d

M
ov

e

m
et

ho
d

R
ot

at
e

E
ve

nt
 D

is
pa

tc
hi

ng

D
es

cr
ip

tio
n

L
ay

ou
t

Im
pl

em
en

ta
tio

n

D
es

cr
ip

tio
n

In
te

rf
ac

e
C

at
eg

or
ie

s

D
es

cr
ip

tio
n

In
te

rf
ac

e
C

at
eg

or
ie

s

D
es

cr
ip

tio
n

In
te

rf
ac

e
C

at
eg

or
ie

s
D

es
cr

ip
tio

n
In

te
rf

ac
e

C
at

eg
or

ie
s

 Fig. 3-6: Sections of class Rectangle using two abstractions and two levels of inheritance

 class Collection
 base class for collections of objects
 …
 Collection Types
 The subclasses of Collection implement different ways of

storing and accessing the objects. …

 Dynamic Creation and Object Copying (class Object)
 see page 34.
 …

 Fig. 3-7: Sample output with reference to
an inherited section

 [*] class Collection
 base class for collections of objects

 [*] List of Sections
 1. List of Sections (Collection), see page [<-].
 2. List of Methods (Collection), see page [->].
 3. Description (Collection), see page [->].
 4. Memory Management (Collection), see page [->].
 5. Collection Types (Collection), see page [->].
 6. Retrieval of Elements (Collection), see page [->].
 7. Iterators (Collection), see page [->].
 8. Enumerating Objects (Collection), see page [->].
 9. History (Collection), see page [->].
 10. Class Descriptors and Dynamic Type-Checks (Object),

see page [->].
 11. Dynamic Creation and Object Copying (Object),

see page [->].
 12. Object Input/Output (Object), see page [->].
 13. Object Comparison (Object), see page [->].
 14. Change Propagation (Object), see page [->].
 15. Flag Handling (Object), see page [->].
 …

 Fig. 3-8: Sample (online) output with
a table of sections

a unit, where for each section (including the in-
herited ones) the corresponding unit and the page
number (printed documentation) or a link (online
documentation) are specified. Fig. 3-8 shows the
online output, where links rather than page num-
bers are provided for direct access to the various
sections.

3.6 Documentation Views

 Nowadays huge amounts of information is read-
ily available. Information filtering is important
for efficient access. Defining categories for
documentation sections is a simple, yet powerful
mechanism to provide various views on a docu-
ment and meet different documentation needs of
various readers. Fig. 3-9 shows what information
might be provided to a casual user of dbxtool. A
professional user would get the other sections as
well.

 When documenting source code, a useful con-
trol mechanism is the distinction among private,
protected and public sections, as is done in the
programming language C++. This distinction de-
termines access rights for clients, heirs and friends
of classes. Public sections can be read by every-
one and are devoted to describing how to use a

class. Protected sections contain more detailed in-
formation that is needed to build subclasses. Fi-
nally, private sections contain additional imple-
mentation details that are exclusively intended for
development and maintenance personnel (see Fig.
4-10). The whole documentation of a class (or a
method) is visible only for friends. Reusers who
build subclasses (heirs) see only a subset of this
documentation; they do not have access to private
sections, which typically describe implementation
details (Implementation sections in Fig. 4-10).
Clients' access is further restricted to public sec-
tions, which contain general interface descriptions
(Description, Layout, Method Descriptions and
Interfaces in Fig. 4-10).

4. Reuse Documentation

 According to documentation abstraction demon-
strated in the previous sections, reuse documenta-
tion should be defined and created for each com-
ponent. The size, layout and contents of such a
manual may vary according to the type of com-
ponents. The information mentioned in Section 2
should be combined in a single document to be
created for reuse purposes. We suggest an outline
consisting of four different parts. Part I contains

Fi
le

na
m

es
E

xp
re

ss
io

ns
O

pe
ra

to
rs

Sc
op

e
R

ul
es

E
xe

cu
tio

n
T

ra
ci

ng
Pr

in
tin

g
D

is
pl

ay
in

g
Fi

le
 A

cc
es

s
M

is
ce

lla
ne

ou
s

M
ac

hi
ne

-L
ev

el
M

ac
hi

ne
 R

eg
is

te
rs

dbxtool

dbx

documentation of dbxtool for casual users

Sy
no

ps
is

N
am

e

A
va

ila
bi

lit
y

D
es

cr
ip

tio
n

O
pt

io
ns

U
sa

ge

E
nv

ir
on

m
en

t

Fi
le

s

Se
e

al
so

N
ot

es

B
ug

s

abstract
man page

C
op

yr
ig

ht

debuggers

 Fig. 3-9: A casual user's view of dbxtool's documentation

general information about a component for
evaluation purposes. It should provide enough in-
formation to decide whether a component is a
possible candidate in a certain reuse scenario, but
refrain from being too detailed. If the informa-
tion in this part contains too many details the
evaluation process will be slowed down. However,
a final decision on which component to choose
out of a set of possible candidates may require
the inspection of information of the other parts
also. Part II contains the essential information for
actual reuse. It should carry all the details neces-
sary for installing, using, and adapting the com-
ponent. Part III contains administrative informa-
tion like legal constraints and available support.
Part IV contains more detailed information for
the evaluation of a component like known bugs,
limitations, and quality statements. Any other in-
formation not covered by the first four parts is
subsumed in Part V.

 PART I: General Information

1. Introduction
name, identification, overview of component

2. Classification
information used for the classification of the
component like a list of keywords, type of
component (e.g., C++ class, C function,
OpenDoc application)

3. Function
overview of all externally visible operations

 PART II: Reuse Information

4. Installation
steps (if any) to be done to incorporate the
component into a system, e.g., installation of
an application

5. Integration
detailed information for effective reuse of
the component, including interfaces, sample
scenarios, diagnostic procedures (what to do
if a problem occurs)

6. Adaptation
means of adaptation to specific needs with
detailed information about how to accom-
plish this, e.g., available options, subclassing

Im
pl

em
en

ta
tio

n

Rectangle

Shape

m
et

ho
d

D
ra

w

documentation of class Rectangle for ...

classes:

m
et

ho
d

O
ut

lin
e

m
et

ho
d

M
ov

e

m
et

ho
d

R
ot

at
e

E
ve

nt
 D

is
pa

tc
hi

ng

D
es

cr
ip

tio
n

L
ay

ou
t

Im
pl

em
en

ta
tio

n

friends

heirs

clients

D
es

cr
ip

tio
n

In
te

rf
ac

e
C

at
eg

or
ie

s

D
es

cr
ip

tio
n

In
te

rf
ac

e
C

at
eg

or
ie

s
D

es
cr

ip
tio

n
In

te
rf

ac
e

C
at

eg
or

ie
s

D
es

cr
ip

tio
n

In
te

rf
ac

e
C

at
eg

or
ie

s

 Fig. 4-10: Documentation sections for clients, heirs, and friends

 PART III: Administrative Information

7. Procurement and Support
source (if component is not directly available
in repository), ownership (any legal or con-
tractual restrictions), maintenance (available
support, points of contact)

8. History
version history, dates of releases, main differ-
ences to old versions

 PART IV: Evaluation Information

9. Quality
information about verification, applied tests,
test results, available test data, retesting pro-
cedures

10. Performance
e.g., assumptions, resource requirements
(disk, CPU, main memory)

11. Alternative components
any known components that might serve as
an alternative to this one

12. Known Bugs
any outstanding problem reports (e.g.,
known bugs, desired enhancements)

13. Limitations
e.g., capacities, programming language, op-
erating system dependencies

14. Possible Enhancements
any possible enhancements, e.g., to improve
performance/maintainability, make the com-
ponent more robust, extend the scope of re-
use

15. Interdependencies
any dependencies to other components, re-
quirements to the environment

 PART V: Other Information

16. Index
Providing an index should be considered for
complex components that require extensive
documentation.

17. References
references to literature or other documenta-
tion (e.g., systems documentation)

 Such an outline should be defined and con-
sistently used for all components in a repository.
Naturally, adaptations may be appropriate de-
pending on the nature of the components being
stored. Documentation inheritance (see Section
3.2) allows the definition of a hierarchy of
documentation outlines for different kinds of
components, as is depicted in Fig. 5-1. This guar-
antees consistent documentation structure for all
components with adaptations according to the
type of a component. If a component is reused
for the development of a software system, the
component's documentation becomes part of the
documentation of the entire system. Any adapta-
tions made to the component have to be clearly
documented as well. Ideally, this is also done by
documentation inheritance without any direct
modifications to the original documentation.

 Functions and classes are the kind of software
components that are most often reused today.
They will, for example, not need any information
on installation (entry 4). However, this may be es-
sential information for the reuse of filters, appli-
cations, or megaprograms. These are examples of
higher levels of abstraction for reusable software
components. For example, filters can be reused
by combining them in pipes [Garlan 93], stand-
alone applications can be reused by means of
command languages like Tcl [Ousterhout 94],
and megaprograms are a conglomerate of huge,
self-contained, stand-alone applications [Wieder-
hold 92]. Documentation inheritance can be fur-
ther utilized by extracting information that is
common to a set of reusable components, e.g., to
all classes of a class library (see XYClass in Fig.
5-1).

5. Integration of Source Code

 Source code components should be reusable
without knowing their internals. However, some-
times it is necessary to modify a component by
making direct changes to its implementation. This

can be caused by the need to modify or enhance
a component's behavior or to eliminate flaws or
existing restrictions. It is important that the
documentation describing the implementation of
the component is available for that purpose and
kept consistent with the changes made. The con-
cept of literate programming supports this con-
sistency. Naturally, legal restrictions may prohibit
the availability of a component's implementation
and allow its reuse as a black box only.

 Donald Knuth stated that programs are written
to be executed by computers rather than to be
read by humans. However, when writing pro-
grams, the goal of telling humans what we want
the computer to do should be more important
than instructing the computer what to do [Knuth
92]. The idea of literate programming is to make
programs as readable as ordinary literature. The
primary goal is not just to get an executable pro-
gram but to get a description of a problem and its
solution (including assumptions, alternative solu-
tions, design decisions, etc.). We agree that literate
programming is a process leading to more care-
fully constructed software systems with better
documentation. Most literate programming tools
automatically provide extensive reading aids like
tables of contents and indexes. We believe that
these tools can and should be used for the entire
documentation of software systems. Of the entire
documentation only a small part will have source

code included. The ad-
vantage is that the whole
system is documented in
a consistent way, and
documentation reuse can
easily be applied.

 Noweb is an example
for a flexible literate pro-
gramming tool [Ramsey
94]. It has been designed
to be as simple as possible
but meet the needs of lit-
erate programmers. No-
web's primary advantages
are simplicity, extensibil-
ity, and language inde-

pendence. The primary sacrifice relative to WEB
is that code is not prettyprinted and that indexing
is not done automatically. A noweb document
consists of a series of chunks that can appear in
arbitrary order. Each chunk contains either code
or documentation. Indexing and cross-
referencing information can be provided for
chunks and for programming language identifi-
ers. Noweb works with any programming lan-
guage and supports TeX, LaTeX, and HTML
back ends. Thus, it can either produce printed or
online documentation. Cross-references in
printed documentation are provided by means of
page numbers and links in online documentation.

 The implementation of any source code com-
ponents should be documented in a literate way.
In addition to that, reuse of documentation
should be exploited. To experiment with these
ideas we are currently working on augmenting
the noweb system with features to support object-
oriented documentation [Sametinger 95]. This
will give us the opportunity to define documenta-
tion structures, reuse documentation, integrate
source code into the documentation, produce
high quality printed output, and produce online
documentation with hypertext links.

6. Conclusion

 We have presented a comfortable and natural
means of reusing any kind of documentation.

...

...

macro function class ...

abstract reuse documentation

filter application megaprogramsource code

XYClass

 Fig. 5-1: Reuse Documentation Hierarchy

This can be done by defining common structures,
extracting common information, extending and
modifying sections, and defining various views on
documentation. The proposed structure for reuse
documentation will not meet everyone's needs.
However, it can serve as a start for the definition
of such structures. The use of documentation hi-
erarchies helps in presenting the commonalties
and differences of various structures and in
keeping documentation consistent, complete, and
up-to-date. Furthermore, literate programming
should be used in order to guarantee consistency
with source code. The definition of various views
on documentation enables the combination of in-
formation of different readers in single docu-
ments, like reuse documentation and systems
documentation. This will also help in reducing
redundancy and keeping information consistent.

 The future goal is to have software systems
built from reusable components and to have their
documentation built upon these components'
documentation. Even though we are still a long
way from that scenario, explicit reuse documen-
tation and documentation reuse will improve the
quality of our software systems and increase the
productivity of software engineers.

7. References

 [Braun 94] Braun Christine, Reuse, in Encyclo-
pedia of Software Engineering, by Marciniak
John J. (Editor-in-Chief), Vol. 1, pp. 1055-1069,
John Wiley & Sons, 1994.

 [Garlan 93] Garlan, D., Shaw, M.: An Introduc-
tion to Software Architecture, in Advances in
Software Engineering and Knowledge Engineer-
ing, Vol. 1, World Scientific Publishing Company,
1993.

 [Karlsson 95] Karlsson Even-André: Software
Reuse: A Holistic Approach, John Wiley & Sons,
1995.

 [Knuth 92] Knuth Donald E.: Literate Pro-
gramming, Leland Stanford Junior University,
1992.

 [Krueger 92] Krueger Charles W.: Software
reuse, Computing Surveys, Vol. 24, pp. 131-183,
June 1992.

 [Meyer 94] Meyer Bertrand: Reusable Software:
The Base object-oriented component libraries,
Prentice Hall, 1994.

 [NATO] NATO Standard for the Development of
Reusable Software Components, Vol. 1 (of 3
Documents), NATO Communications and Infor-
mation Systems Agency.

 [Ousterhout 94] Ousterhout John K.: Tcl and
the Tk Toolkit, Addison Wesley, 1994.

 [Ramsey 94] Ramsey N.: Literate programming
simplified. IEEE Software, Vol. 11, No. 5, pp. 97-
105, September 1994.

 [Sametinger 94] Sametinger Johannes: Object-
oriented Documentation, ACM Journal of Com-
puter Documentation, Vol. 18, No. 1, pp. 3-14,
January 1994.

 [Sametinger 95] Sametinger Johannes: Literate
Programming and Documentation Reuse, to be
published.

 [Wiederhold 92] Wiederhold Gio, Wegner Peter,
Ceri Stefano: Toward Megaprogramming, Com-
munications of the ACM, Vol. 35, No. 11, pp. 89-
99, November 1992.

